
Week 1: Introduction to R
R content of ACTL1101

Learning outcomes

By the end of this topic, you should be able to do the following in R:

• perform basic calculations
• perform relational and logical operations
• define variables
• recognise and create data of different types
• generate random observations

Reference

These slides often make reference to specific pages from the following book:

• Lafaye de Micheaux P, Drouilhet R and Liquet B (2013), The R Software: Fundamentals
of Programming and Statistical Analysis, Springer, New York

This book serves as the main (though not only) reference for the R content of ACTL1101.
While you can buy a hard copy of this book at the UNSW bookshop, it is also downloadable
for free at the following link (you may have to enter your UNSW credentials to access it).

Why learn R?

• Made by statisticians for statisticians for data analysis
• Open source (free!)
• Relatively simple
• Great tool for data visualisation
• Can handle large data sets
• Pretty fast (and, if needed, efficiency can be increased with some ‘tricks’ like RCPP)
• Used in the actuarial industry (and others!)
• The majority of actuarial or statistical textbooks use R

1

https://www.bookshop.unsw.edu.au/details.cgi?ITEMNO=9781461490197
https://www.bookshop.unsw.edu.au/details.cgi?ITEMNO=9781461490197
https://link.springer.com/book/10.1007/978-1-4614-9020-3
http://adv-r.had.co.nz/Rcpp.html
https://r-consortium.org/webinars/r-insurance-series.html

• Used in many other actuarial courses at UNSW
• A wealth of resources available, e.g. Quick-R, R Seek, Stack Overflow, and many

others

R is a calculator

Simple calculations - page 38

R can easily replace all the functionalities of a (sophisticated!) calculator.

sin(2*pi/3) # <--- this symbol is for comments.

[1] 0.8660254

5^2 # Same as 5*5.

[1] 25

sqrt(4) # Square root of 4.

[1] 2

log(1) # Natural logarithm of 1.

[1] 0

c(1,2,3,4,5) # Collection of the first 5 integers.

[1] 1 2 3 4 5

c(1,2,3,4,5)*2 # First five even numbers.

[1] 2 4 6 8 10

2

https://www.statmethods.net/
https://rseek.org/
https://stackoverflow.com/questions/tagged/r

R is a calculator - Exercise

Calculate the following

• 3√8
• 𝑒2

R is a calculator - Solution

8^(1/3)

[1] 2

exp(2)

[1] 7.389056

Storing values

Page 39

R responds to your requests by displaying the result obtained after evaluation. However, this
result is displayed, then lost.

To store values, one can use the assignment arrows: <- or ->, or the more standard =.

x <- 1 # Assignment.
x # Display.

[1] 1

2 -> x # Assignment (in the other direction).
x # Display.

[1] 2

3

x = 3 # Assignment.
x # Display.

[1] 3

(x <- 1) # Assignment AND display.

[1] 1

These stored values are known as variables (more on these later).

Assignment operators

While there are many ways to assign variables in R, it is recommended that you either use =
or <-.

Some of you may also be asking whether there are any differences between the different assign-
ment operators, and there are, but they are unlikely to have any effect on the kind of things
we will do in this course.

If you are interested in the differences anyway, see this link for more information.

Once we move to RStudio, there is an inbuilt shortcut Alt + - for typing <-.

Variables - Exercise

Perform the following tasks

• Create a variable var1 whose value is the sum of {1, 2, 3, 4}
• Create a variable var2 whose value is the multiplication of 𝑒 and 𝜋
• Create a variable var3 whose value is the sum of var1 and var2
• Display the value of var3

Variables - Solution

var1 <- sum(c(1,2,3,4))
var2 <- exp(1)*pi
var3 <- var1+var2
var3

[1] 18.53973

4

https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators

Assignment operations - Exercise

Which of the following are valid methods of assigning x with the value 2?

• x = 2? Yes
• 2 -> x? Yes
• x -> 2? No

• x <- 2? Yes
• 2 = x? No
• 2 <- x? No

Vectors

Page 51

• Vectors are a very important type of data structure in R. We will see other types of
data structures in Week 2, but for now we concentrate on vectors.

• A vector is a sequence of data points of the same type.

• You can create a vector in different ways. For instance, the function c() produces a
vector.

• Operations performed on vectors are done element by element.

c(1,2,3)

[1] 1 2 3

c(1,2,3) + c(4,5,6)

[1] 5 7 9

c(1,2,3) * c(4,5,6)

[1] 4 10 18

5

Vectors (continued)

• To produce a vector, you can also use function seq()

seq(from=0, to=1, by=0.1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

seq(from=0, to=20, length=5)

[1] 0 5 10 15 20

• Or simply use the colon :

vec <- 2:10
vec

[1] 2 3 4 5 6 7 8 9 10

Vectors - Exercise - Page 73

• Create a vector of numbers from 4 up to 5, where the increment is by 0.3

seq(from=4, to=5, by=0.3)

[1] 4.0 4.3 4.6 4.9

• Create a vector of numbers equally spaced from 4 to 5, where the total length is 5

seq(from=4, to=5, length=5)

[1] 4.00 4.25 4.50 4.75 5.00

Relational operations

Pages 97-98

You can perform relational operations in R, which will output logical values (TRUE/FALSE)
(note: you can scroll down)

6

Strictly greater
2 < 3

[1] TRUE

2 < 2

[1] FALSE

Greater or equal
2 <= 2

[1] TRUE

Equal
1 == 1

[1] TRUE

Not equal
1 != 1

[1] FALSE

Vector of relational operations
c(2>1,4>2,pi==3)

[1] TRUE TRUE FALSE

Equality between two vectors
c(1,2,3)==c(1,1,3)

[1] TRUE FALSE TRUE

Note that in the last case, since two vectors are compared, three results are given, one for each
individual relation.

7

Logical operations

The AND operator - Pages 97-98

You can perform logical operations in R, which will output logical values. Any logical operation
takes the form

statement1 OPERATOR statement2

We start with the operator AND. If statement1 is T and statement2 is T, then AND outputs T,
otherwise, it outputs F.

In R there are two AND operators, & and &&. We start with & which is an element-wise compar-
ison.

It compares the first element of the first vector to the first element of the second vector, then
the second of the first vector to the second of the second vector, etc.

It therefore returns a vector of logical values. See if you can understand how the output
below is produced.

c(T,T,F,F) & c(T,F,T,F)

[1] TRUE FALSE FALSE FALSE

Obviously, we can combine this with the previous section to construct statements like

c(2>1,4>2) & c(1>2,pi>=3)

[1] FALSE TRUE

The AND operator continued

The && AND operator is known as the short-circuit evaluation

• It can only be used on scalars, not vectors
• It hence returns a single logical value
• Normally used in programming control flows (Week 3)

T && F && T

[1] FALSE

8

2 > 1 && 3 > 0 && 9 > 5

[1] TRUE

if you try for example c(2>1,4>2)&&c(1>2,3>0), you get an error

So what is the point of this? Well ‘short-circuit’ means that if one condition fails, the entire
condition fails and it does not check the other conditions. This means you can do things like

x <- -2
x > 0 && sqrt(x) < 20

[1] FALSE

because as soon as it finds that the first statement was false, it exits the operation rather than
trying to take the square root of a negative number.

The OR and NOT operators

The OR operator does exactly what it sounds like. If statement1 is T or statement2 is T, then
it returns T, otherwise it returns F.

Again we have both | and ||.

c(T, T, F, F) | c(T, F, T, F)

[1] TRUE TRUE TRUE FALSE

c(2 > 1, 3 < 1) | c(0 > 1, 4 < 1)

[1] TRUE FALSE

0 > 2 || 3 < 4 || 1 < 0

[1] TRUE

The NOT operator is much simpler and represented by !; it just inverts the result, i.e. T becomes
F, and F becomes T:

9

!c(T, T, F)

[1] FALSE FALSE TRUE

!(2 > 3)

[1] TRUE

Logical operations - Pages 97-98

There are many other functions in R that operate on logical values/vectors, such as:

any(c(F,T,F,F))

[1] TRUE

all(c(F,T,F,F))

[1] FALSE

Another useful trick is that internally R (and most programming languages) treat T as 1 and
F as 0, e.g.,

T+T+T+F+F

[1] 3

sum(c(T,F,T,F,F,F))

[1] 2

You can also do things like:

sum(c(1, 2, 3, 4) > 2.5) # Count number of "TRUE" in the vector

[1] 2

10

mean(c(1, 2, 3, 4) > 2.5) # Calculates the proportion of TRUEs

[1] 0.5

sum(c(F, T, F, F)) > 0 # This is equivalent to any()

[1] TRUE

sum(c(T, T, F)) == 3 # This is equivalent to all()

[1] FALSE

Variables in R

Page 40

A variable is an object in R. There are rules for choosing a variable name:

• a variable name can only include alphanumerical characters, underscore (_) and
the dot (.);

• variable names are case sensitive, which means that R distinguishes upper and lower
case;

• a variable name may not include white space or start with a digit.

Note: use meaningful names for your variables to improve the readability of your code.

Data types - page 50

One of the main strengths of R is its ability to organise data in a structured way. This will
turn out to be very useful for many statistical procedures and data analysis.

Data type Type in R Display
real number (integer or not) numeric (double) 3.27
integer numeric (integer) 3
complex number complex 3+2i
logical (true/false) logical TRUE or FALSE
missing logical NA

11

Data type Type in R Display
text (string) character “text”

Data types - Examples - pages 46-48

a <- 1
typeof(a)

[1] "double"

c <- as.integer(a)
typeof(c)

[1] "integer"

is.numeric(a)

[1] TRUE

is.integer(a)

[1] FALSE

x <- TRUE # same as: x <- T
typeof(x)

[1] "logical"

is.logical(x)

[1] TRUE

b <- 3.4
my.vec <- c(b>a,a==b)
typeof(my.vec)

[1] "logical"

12

Data types - Missing data - pages 48-49

A missing or undefined value is indicated by the instruction NA (for Non Available).

x <- c(3,NA,6)
is.na(x)

[1] FALSE TRUE FALSE

Normally if you try and do numerical operations with NA, the whole operation becomes NA as
you can see below. This is done to alert you that their are NAs in your data, but if you want
to ignore them, some functions (e.g. mean and sum) come with an na.rm argument

sum(x)

[1] NA

sum(x,na.rm=T)

[1] 9

mean(x,na.rm=T)

[1] 4.5

This argument removes all the NAs before applying the operation.

Dealing with NAs is very important once we get to importing and using external data.

Data types - Character strings - page 49

Any information between quotation marks (single ’ ’ or double “ “) corresponds to a character
string. Try the following commands:

a <- "R is my friend"
typeof(a)

[1] "character"

13

is.character(a)

[1] TRUE

Data types - Exercise

Given that

var1 <- as.integer(3)
var2 <- "1"

• Determine the types of var1 and var2

typeof(var1)

[1] "integer"

typeof(var2)

[1] "character"

• Convert var1 to a double precision number using as.double

Notice that as.double still needs to be re-assigned to the variable, otherwise it does nothing.
Most functions in R behave this way and do not perform “in-place” changes

as.double(var1)

[1] 3

typeof(var1) # The above as.double did not change var1

[1] "integer"

var1 <- as.double(var1)
typeof(var1)

[1] "double"

14

Probability distributions and random variables in R

Distribution-related functions

• We have seen in the ‘Probability’ theory part of this coure, that random variables are
mathematical descriptions of the random phenomena encountered in everyday life.

• Many probability distributions are implemented in base R. There are typically four func-
tions you can use for each distribution. For the Normal distribution they are dnorm
(density function), pnorm (CDF), qnorm (quantile function) and rnorm (random genera-
tor).

dnorm(1.96, mean = 0 , sd = 1)

[1] 0.05844094

pnorm(1.96, mean = 0 , sd = 1)

[1] 0.9750021

qnorm(0.5, mean = 0 , sd = 1)

[1] 0

qnorm(0.975, mean = 0 , sd = 1)

[1] 1.959964

rnorm(1, mean = 0, sd = 1)

[1] 0.07982161

• Many more probability distributions are implemented in R. For instance, can you guess
what dexp() does? Or pbinom()?

15

Generating random variables in R - Page 74

• To conduct statistical analysis, it is often useful to be able to generate realisations from
random variables, and R is an apt tool to do so throught the use of functions runif(),
rnorm(), rgamma(), etc…

Generate two random obervations from a Uniform[0,1]
runif(n = 2)

[1] 0.6120920 0.6383312

Generate four random observations from a Uniform[2,7]
runif(n = 4, min=2, max=7)

[1] 2.755362 2.610214 5.344028 6.199502

Generate random variables in R - Exercise - Page 74

• Generate two realisations of a standard normal random variable

rnorm(2)

[1] 0.03739676 0.19007710

• Generate one realisation of a normal random variable with mean 10 and standard devi-
ation 0.1

rnorm(1, mean=10, sd=0.1)

[1] 10.0611

Homework

We place below some problems for you to solve as extra practice… try them out!

16

Homework Exercises 1

What is the output produced by the following R codes? Try to predict it before typing the
commands in R!

• 1:3^2
• (1:5)*2
• root.of.four <- sqrt(4)
• TRUE + T +FALSE*F + T*FALSE + F

(Inspired from Exercises 3.1-3.13 in the R Textbook.)

Homework Exercise 2

What can be improved about the following variable names? Suggest a better alternative.

• delaytime

• the_number_of_marks_higher_than_50

• 20_day_limit

• child/adult

• pi

• variable1

Homework exercise 3

Create a vector x consisting of 10 randomly generated Binomial(𝑛 = 100, 𝑝 = 0.1) variables,
and display the result.

Homework exercise 4

Create 3 randomly generated standard Normal random variables.

Homework exercise 5

By generating an independent sample of size 10000, approximate the probability that a stan-
dard normal random variable is greater than 1.96
Hint: check slide 24 if you are having trouble with calculating the probability after simulat-
ing.

17

	Learning outcomes
	Reference
	Why learn R?
	R is a calculator
	Simple calculations - page 38
	R is a calculator - Exercise
	R is a calculator - Solution

	Storing values
	Page 39
	Assignment operators
	Variables - Exercise
	Variables - Solution
	Assignment operations - Exercise

	Vectors
	Page 51
	Vectors (continued)
	Vectors - Exercise - Page 73

	Relational operations
	Pages 97-98

	Logical operations
	The AND operator - Pages 97-98
	The AND operator continued
	The OR and NOT operators
	Logical operations - Pages 97-98

	Variables in R
	Page 40
	Data types - page 50
	Data types - Examples - pages 46-48
	Data types - Missing data - pages 48-49
	Data types - Character strings - page 49
	Data types - Exercise

	Probability distributions and random variables in R
	Distribution-related functions
	Generating random variables in R - Page 74
	Generate random variables in R - Exercise - Page 74

	Homework
	Homework Exercises 1
	Homework Exercise 2
	Homework exercise 3
	Homework exercise 4
	Homework exercise 5

