
Week 4: Data manipulation and statistical
analysis

R content of ACTL1101

Learning outcomes

By the end of this topic, you should be able to

• manipulate different data structures using appropriate functions
• rectify incorrectly imported data
• summarise and organise data in a variety of ways, including with package dplyr
• compute useful statistics from imported data

Data frames refresher

Data frames - Exercise

Let’s start with an exercise using data frames to remind ourselves how they work.

Consider some data stored in a data frame:

Y <- data.frame(
Name=c("Aiyana", "James", "John", "Abbey"),
Gender=c("F","M","M","F"),
Height=c(165,182,178,160),
Weight=c(50,65,67,55),
Income=c(80,90,60,50))

• What is the sum of everyone’s heights?

sum(Y$Height)

[1] 685

1



• What are the full details of James? (Try to return the entire row that corresponds to
James)

Y[Y$Name == "James",]

Name Gender Height Weight Income
2 James M 182 65 90

• What is the average income of the males?

mean(Y$Income[Y$Gender == "M"])

[1] 75

• Who is the shortest person? Hint: use which.min

Y$Name[which.min(Y$Height)]

[1] "Abbey"

Aside on this week

• You may have noticed that even for simple examples as those of the previous slide, R
syntax can get clunky. You are not alone.

• But there is good news. In the last section of this week’s slides, we learn about a new R
syntax that makes manipulating data easier.

• Indeed, we will use the external package dplyr, which is part of the tidyverse. This is a
collection of R packages for data science that aim to make R more powerful and easy to
use. Stay tuned.

The attach() function

• The function attach(some.data.frame) creates a workspace where each variable of
the data frame can be accessed directly (without using the dollar sign $). Therefore
it can reduce the length of your code. However, these “attached” columns now exist
“independently” of the data frame. In other words, if you make a change in the actual
data frame, it will not affect the attached columns.

• We recommend to be very careful with the attach() function (especially for large
projects).
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attach(Y)
Gender

[1] "F" "M" "M" "F"

# We update GENDER in our data frame X
Y$Gender <- c("F", "F", "F", "F")
Y$Gender

[1] "F" "F" "F" "F"

# However, the version of X we 'attached' has NOT been updated
Gender

[1] "F" "M" "M" "F"

Statistical analysis

Importing data - Pages 339-343

Here we use the sample_data.csv data to illustrate a few handy statistical functions. This
data is already in Ed (in this week’s “Lab Exercise Space”). You can download it if you want
to use it on your computer.

• import the data to R (if doing this on your computer, first save the data in the folder
you set as the working directory)

• use the attach() function to gain direct access to the variables

sample_data <- read.csv("sample_data.csv", header=TRUE)
attach(sample_data)
head(sample_data)

dob gender situation tea coffee height weight age meat fish
1 1967-01-28 Female single 0 0 151 58 58 4-6/week. 2-3/week.
2 1965-05-05 Female single 1 1 162 60 60 1/day. 1/week.
3 1950-11-21 Female single 0 4 162 75 75 2-3/week. <1/week.
4 1980-03-16 Female single 0 0 154 45 45 never 4-6/week.
5 1975-07-20 Female single 2 1 154 50 50 1/day. 2-3/week.
6 1959-07-23 Female single 2 0 159 66 66 4-6/week. 1/week.
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raw_fruit cooked_fruit_veg chocol fat
1 <1/week. 4-6/week. 1/day. Isio4
2 1/day. 1/day. <1/week. sunflower
3 1/day. 1/week. 1/day. sunflower
4 4-6/week. never 2-3/week. margarine
5 1/day. 1/day. 2-3/week. margarine
6 1/day. 1/day. <1/week. peanut

Statistical Analysis - Variables - Pages 339-343

14 variables (columns) of 226 individuals (rows)

• qualitative: gender, fat and situation

• ordinal: meat, fish, raw_fruit, cooked_fruit_veg and chocol

• discrete quantitative: tea, coffee

• continuous quantitative: height, weight and age

• other: dob (dates do not really fit into any category cleanly, and their qualification
depends on the use case)

Notes

• The sample_data.csv is created based from the nutrition_elderly.csv spreadsheet
downloaded from http://www.biostatisticien.eu/springeR/nutrition_elderly.xls. See
Page 339.

• Variables of nutrition_elderly.csv have been structured following the steps from
Pages 340-343 and a new data frame was created and saved as sample_data.csv

Numerical statistics - Pages 347-352

Some useful statistics for a preliminary analysis (of variable weight in this example):

mean(weight)

[1] 66.4823

median(weight)

[1] 66
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sd(weight)

[1] 12.03337

max(weight)-min(weight)

[1] 58

IQR(weight)

[1] 17.75

mean(abs(weight-mean(weight)))

[1] 9.919884

quantile(weight, probs=c(0.1,0.9))

10% 90%
51.5 82.0

Note: Remember, variable weight can be accessed directly only because we use the command
attach(sample_data) previously!

Numerical statistics

While knowing all of these functions is helpful for individual variables, it is often useful to get
an overall picture of the dataset, and for this we have the summary() function.

summary(sample_data)

dob gender situation tea
Length:226 Length:226 Length:226 Min. : 0.0000
Class :character Class :character Class :character 1st Qu.: 0.0000
Mode :character Mode :character Mode :character Median : 0.0000

Mean : 0.7124
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3rd Qu.: 1.0000
Max. :10.0000

coffee height weight age
Min. :0.000 Min. :140 Min. :38.00 Min. :38.00
1st Qu.:1.000 1st Qu.:157 1st Qu.:57.25 1st Qu.:57.25
Median :2.000 Median :163 Median :66.00 Median :66.00
Mean :1.619 Mean :164 Mean :66.48 Mean :66.48
3rd Qu.:2.000 3rd Qu.:170 3rd Qu.:75.00 3rd Qu.:75.00
Max. :5.000 Max. :188 Max. :96.00 Max. :96.00

meat fish raw_fruit cooked_fruit_veg
Length:226 Length:226 Length:226 Length:226
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character

chocol fat
Length:226 Length:226
Class :character Class :character
Mode :character Mode :character

Do you notice something strange? There are some issues here:

1. Variables like gender are not being treated as qualitative, but as arbitrary characters.
2. Likewise, variables like fish and meat are being treated as arbitrary characters instead

of ordinal.
3. Likewise, dob is being treated as arbitrary characters, instead of a date.

We also could have found these issues by using str(sample_data).

Correcting the qualitative/ordinal variables

When importing external data, it is common to have issues like those on the previous slide, so
it is worthwhile to look at how we can fix those problems.

1. We can use factor for this.
2. We can use factor with ordered=T and levels (we saw this in week 2).
3. R has a specific data structure for dates. We can convert a character to a date with

function as.Date.
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Starting with the first two

sample_data$gender = factor(sample_data$gender)
sample_data$fish = factor(sample_data$fish, ordered = T,
levels = c("never", "<1/week.", "1/week.", "2-3/week.", "4-6/week.", "1/day.")

) # you can find all the levels using unique(sample_data$fish)

The other variables have been corrected as well but omitted here for brevity. You should try
to construct them yourself.

Correcting the dates

• To convert dates we use the as.Date function. Of course, dates can be stored in many
formats (e.g. "15-06-2025", "15/06/25", "2025-Jun-15" etc), and we must tell R which
format we have, using the format argument.

head(dob,3)

[1] "1967-01-28" "1965-05-05" "1950-11-21"

sample_data$dob = as.Date(sample_data$dob, format="%Y-%m-%d")

• The format specified above says we are looking for a 4 digit year with the month and
day represented by numbers. You can see a full list of format specifiers (with some more
advanced use cases) here.

• While it may not be immediately obvious why using the proper date structure is useful, to
perform visualisation or complex manipulations, having “proper” date objects is required.
To give you a small use case, note that you can “add” to a date, but not if it’s stored as
a character.

(today <- Sys.Date())

[1] "2025-07-18"

today + 7

[1] "2025-07-25"
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"2025-06-21"+7

Error in "2025-06-21" + 7: non-numeric argument to binary operator

• One last note: R stores dates in the format YYYY-mm-dd. You can display a date in
another format using function format. However, when doing this the date reverts back
to a character.

(tomorrow <- format(today+1, "%d-%m-%Y"))

[1] "19-07-2025"

tomorrow + 1

Error in tomorrow + 1: non-numeric argument to binary operator

Checking again our imported data

Once this is all done we can view the summary, which is now much more informative.

summary(sample_data)

dob gender situation tea
Min. :1929-01-09 Female:141 couple:119 Min. : 0.0000
1st Qu.:1950-06-24 Male : 85 family: 9 1st Qu.: 0.0000
Median :1959-08-30 single: 98 Median : 0.0000
Mean :1959-01-12 Mean : 0.7124
3rd Qu.:1968-03-31 3rd Qu.: 1.0000
Max. :1987-05-14 Max. :10.0000

coffee height weight age meat
Min. :0.000 Min. :140 Min. :38.00 Min. :38.00 never : 1
1st Qu.:1.000 1st Qu.:157 1st Qu.:57.25 1st Qu.:57.25 <1/week. : 3
Median :2.000 Median :163 Median :66.00 Median :66.00 1/week. :11
Mean :1.619 Mean :164 Mean :66.48 Mean :66.48 2-3/week.:83
3rd Qu.:2.000 3rd Qu.:170 3rd Qu.:75.00 3rd Qu.:75.00 4-6/week.:67
Max. :5.000 Max. :188 Max. :96.00 Max. :96.00 1/day. :61

fish raw_fruit cooked_fruit_veg chocol
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never : 4 never : 2 never : 2 never :50
<1/week. : 21 <1/week. : 8 <1/week. : 3 <1/week. :62
1/week. : 61 1/week. : 8 1/week. : 7 1/week. :16
2-3/week.:118 2-3/week.: 14 2-3/week.: 30 2-3/week.:22
4-6/week.: 15 4-6/week.: 22 4-6/week.: 36 4-6/week.:11
1/day. : 7 1/day. :172 1/day. :148 1/day. :65

fat
sunflower:68
peanut :48
olive :40
margarine:27
Isio4 :23
butter :15
(Other) : 5

• A good data analyst always checks the format and quality of the data they imported.
• While the previous slides have shown a few simple cases, there are many more potential

issues you can (will!) encounter when importing data.
• There is no escaping it: albeit “boring”, cleaning up these issues will often constitute a

large part of your work as a data analyst.

Frequency table - discrete variables - Pages 343-344

For qualitative variable situation:

(tc <- table(situation))

situation
couple family single

119 9 98

(tf <- tc/length(situation))

situation
couple family single

0.52654867 0.03982301 0.43362832
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Frequency table - joint observations - Pages 344-345

For the paired observations of gender and situation:

(mytable <- table(gender,situation))

situation
gender couple family single
Female 56 7 78
Male 63 2 20

(table.complete <- addmargins(mytable, FUN=sum))

Margins computed over dimensions
in the following order:
1: gender
2: situation

situation
gender couple family single sum
Female 56 7 78 141
Male 63 2 20 85
sum 119 9 98 226

Correlation: an association measure - Pages 354-355

The cor() function computes the (sample) correlation between two variables, which is a
measure of linear association. As an example, we compute the correlation between two
variables from the in-built dataset mtcars:

• wt: weight of the car (in 1000’s of pounds)
• mgp: miles per gallon

cor(mtcars$wt, mtcars$mpg)

[1] -0.8676594

10



The correlation always ranges from −1 to 1. Here a correlation of −0.868 indicates a strong
negative association between wt and mgp: the heavier the car, the less distance it can go
with one gallon of fuel (which makes sense!).

#Plot one variable vs the other
plot(mtcars$wt, mtcars$mpg, main = "Miles per gallon vs Weight of a car",

xlab="weight",ylab ="miles/gallon")
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Note: We will see more about correlation in Module 4: Risk & Insurance (Theory component
of the course).

Exercise

Use the in-built R dataset cars. Calculate the correlation between the speed and dist (for
stopping distance) from the 50 observations.

What can you learn? Is there any further investigation you want to do?

Solution

cor(cars$speed, cars$dist)

[1] 0.8068949
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Comments:

• The correlation is 0.807, which indicates a high level of positive linear association between
the two variables, i.e. if one variable is “high”, the other variable also tends to be “high”.

• We can create the scatter plot of one variable versus the other and examine the relation-
ship ‘visually’. More on plots next Week!

• Here it turns out that an even better description of the relationship between these two
variables is a linear relationship between the log-scaled values… also more on that later!

plot(cars$speed, cars$dist)
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plot(log(cars$speed), log(cars$dist))
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cor(log(cars$speed), log(cars$dist))

[1] 0.8562385

dplyr

dplyr - Introduction

dplyr is a commonly used package (which we need to load into R as it is not part of ‘base R’).
It makes manipulating dataframes very easy and intuitive and is great for data analysis. To
install any package, just type

# Install the package on your computer (not needed if you do this in Ed!)
install.packages('dplyr')

• To use a specific function from a package, the syntax is dplyr::function_name().
• This is okay if you use a function once or twice, but in general it is better to load the

entire package into our workspace:

# Loads the package
library('dplyr')

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

• You can then use all functions in the package, for as long as your R session lasts. There
are 6 main functions in dplyr:

• filter - selects rows

• select - selects columns

• arrange - sorts rows by some order
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• mutate - creates new columns

• group_by - groups certain rows together

• summarise - provides summaries of grouped rows

dplyr - Filter and Select

Here some examples using the in-built data frame mtcars

# Show the dataset
head(mtcars, 3)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

# Filters the dataset for observations with mpg greater than 25
filter(mtcars, mpg > 25)

mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

# Returns the dataframe mtcars but only with the 3 specified columns
select(mtcars, mpg, cyl, wt)

mpg cyl wt
Mazda RX4 21.0 6 2.620
Mazda RX4 Wag 21.0 6 2.875
Datsun 710 22.8 4 2.320
Hornet 4 Drive 21.4 6 3.215
Hornet Sportabout 18.7 8 3.440
Valiant 18.1 6 3.460
Duster 360 14.3 8 3.570
Merc 240D 24.4 4 3.190
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Merc 230 22.8 4 3.150
Merc 280 19.2 6 3.440
Merc 280C 17.8 6 3.440
Merc 450SE 16.4 8 4.070
Merc 450SL 17.3 8 3.730
Merc 450SLC 15.2 8 3.780
Cadillac Fleetwood 10.4 8 5.250
Lincoln Continental 10.4 8 5.424
Chrysler Imperial 14.7 8 5.345
Fiat 128 32.4 4 2.200
Honda Civic 30.4 4 1.615
Toyota Corolla 33.9 4 1.835
Toyota Corona 21.5 4 2.465
Dodge Challenger 15.5 8 3.520
AMC Javelin 15.2 8 3.435
Camaro Z28 13.3 8 3.840
Pontiac Firebird 19.2 8 3.845
Fiat X1-9 27.3 4 1.935
Porsche 914-2 26.0 4 2.140
Lotus Europa 30.4 4 1.513
Ford Pantera L 15.8 8 3.170
Ferrari Dino 19.7 6 2.770
Maserati Bora 15.0 8 3.570
Volvo 142E 21.4 4 2.780

# Returns columns mpg, cyl, wt for rows with mpg > 25 and wt <= 2
select(filter(mtcars, mpg > 25, wt <= 2), mpg, cyl, wt)

mpg cyl wt
Honda Civic 30.4 4 1.615
Toyota Corolla 33.9 4 1.835
Fiat X1-9 27.3 4 1.935
Lotus Europa 30.4 4 1.513

dplyr - Pipeline operator and Arrange

• As you apply more operations to your dataframe, the nested functions you use can get
hard to read.

• Luckily, dplyr includes the useful pipeline operator %>% (orally referred to as “pipe”,
such as in “A pipe B”). Think of it as “and then”.
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# Take the dataframe, AND THEN filter for mpg > 25 and wt <= 2
mtcars %>% filter(mpg > 25, wt <=2)

mpg cyl disp hp drat wt qsec vs am gear carb
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

# Do the same, AND THEN select certain columns
mtcars %>%
filter(mpg > 25, wt <=2) %>%
select(mpg, cyl, wt)

mpg cyl wt
Honda Civic 30.4 4 1.615
Toyota Corolla 33.9 4 1.835
Fiat X1-9 27.3 4 1.935
Lotus Europa 30.4 4 1.513

########################### arrange ##################################
# Sort the rows in ascending order of wt
mtcars %>%
filter(mpg > 25) %>%
arrange(wt)

mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

# Sort the rows in descending order of wt
mtcars %>%
filter(mpg > 25) %>%
arrange(desc(wt))

16



mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

dplyr - Mutate

• mutate() allows you to easily create new variables (as function of other variables)

mtcars %>%
mutate(double_wt = wt*2, # Creates a new variable called double_wt

kms_per_gallon = mpg*1.61, # Creates a new variable called kms_per_gallon
name = row.names(mtcars)) %>% # Creates a new variable with names of the cars

select(name, double_wt, kms_per_gallon)

name double_wt kms_per_gallon
Mazda RX4 Mazda RX4 5.240 33.810
Mazda RX4 Wag Mazda RX4 Wag 5.750 33.810
Datsun 710 Datsun 710 4.640 36.708
Hornet 4 Drive Hornet 4 Drive 6.430 34.454
Hornet Sportabout Hornet Sportabout 6.880 30.107
Valiant Valiant 6.920 29.141
Duster 360 Duster 360 7.140 23.023
Merc 240D Merc 240D 6.380 39.284
Merc 230 Merc 230 6.300 36.708
Merc 280 Merc 280 6.880 30.912
Merc 280C Merc 280C 6.880 28.658
Merc 450SE Merc 450SE 8.140 26.404
Merc 450SL Merc 450SL 7.460 27.853
Merc 450SLC Merc 450SLC 7.560 24.472
Cadillac Fleetwood Cadillac Fleetwood 10.500 16.744
Lincoln Continental Lincoln Continental 10.848 16.744
Chrysler Imperial Chrysler Imperial 10.690 23.667
Fiat 128 Fiat 128 4.400 52.164
Honda Civic Honda Civic 3.230 48.944
Toyota Corolla Toyota Corolla 3.670 54.579
Toyota Corona Toyota Corona 4.930 34.615
Dodge Challenger Dodge Challenger 7.040 24.955
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AMC Javelin AMC Javelin 6.870 24.472
Camaro Z28 Camaro Z28 7.680 21.413
Pontiac Firebird Pontiac Firebird 7.690 30.912
Fiat X1-9 Fiat X1-9 3.870 43.953
Porsche 914-2 Porsche 914-2 4.280 41.860
Lotus Europa Lotus Europa 3.026 48.944
Ford Pantera L Ford Pantera L 6.340 25.438
Ferrari Dino Ferrari Dino 5.540 31.717
Maserati Bora Maserati Bora 7.140 24.150
Volvo 142E Volvo 142E 5.560 34.454

dplyr - Why use the pipeline operator?

The pipeline operator makes it much easier to read what is going on. Note that the following
two pieces of code achieve the same thing.

# No pipeline
arrange(select(filter(mtcars, mpg > 25), mpg, wt, cyl), desc(wt))

mpg wt cyl
Fiat 128 32.4 2.200 4
Porsche 914-2 26.0 2.140 4
Fiat X1-9 27.3 1.935 4
Toyota Corolla 33.9 1.835 4
Honda Civic 30.4 1.615 4
Lotus Europa 30.4 1.513 4

# With pipeline
mtcars %>%
filter(mpg > 25) %>%
select(mpg, wt, cyl) %>%
arrange(desc(wt))

mpg wt cyl
Fiat 128 32.4 2.200 4
Porsche 914-2 26.0 2.140 4
Fiat X1-9 27.3 1.935 4
Toyota Corolla 33.9 1.835 4
Honda Civic 30.4 1.615 4
Lotus Europa 30.4 1.513 4
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You need some concentration to get what the first code is doing! In contrast, you can easily
interpret the second code as:

• take the mtcars dataset, and then

• filter for mpg > 25, and then

• select the columns mpg, wt, cyl, and then

• arrange them by descending weight

dplyr - summarise and group_by

summarise() will give you summary statistics

mtcars %>%
summarise(mean_mpg = mean(mpg),

num_cars = n(),
sd_wt = sd(wt))

mean_mpg num_cars sd_wt
1 20.09062 32 0.9784574

group_by() is a very powerful function that will group rows into different categories. You can
then use summarise() to find summary statistics of each group

mtcars %>%
group_by(cyl) %>% # Group cars by how many cylinders they have
summarise(avg_mpg = mean(mpg)) # Find the average mpg for each group (cyl)

# A tibble: 3 x 2
cyl avg_mpg

<dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

Common summary statistics include:

• mean() the average
• sd() the standard deviation
• n() the count
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This can also be used to group by multiple features

mtcars %>%
group_by(cyl, gear) %>%
summarise(median_hp = median(hp))

`summarise()` has grouped output by 'cyl'. You can override using the `.groups`
argument.

# A tibble: 8 x 3
# Groups: cyl [3]

cyl gear median_hp
<dbl> <dbl> <dbl>

1 4 3 97
2 4 4 66
3 4 5 102
4 6 3 108.
5 6 4 116.
6 6 5 175
7 8 3 180
8 8 5 300.

dplyr Exercise 1

Using the in-built dataset quakes:

1. Find all the rows with magnitude (mag) greater or equal to 5.5

2. Display only the columns depth, mag and stations

quakes %>% filter(mag>5.5) %>% select(depth,mag,stations)

depth mag stations
1 139 6.1 94
2 50 6.0 83
3 42 5.7 76
4 56 5.7 106
5 127 6.4 122
6 205 5.6 98
7 216 5.7 90
8 577 5.7 104
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9 562 5.6 80
10 48 5.7 123
11 535 5.7 112
12 64 5.9 118
13 75 5.6 79
14 546 5.7 99
15 417 5.6 129
16 153 5.6 87
17 93 5.6 94
18 183 5.6 109
19 627 5.9 119
20 40 5.7 78
21 242 6.0 132
22 589 5.6 115
23 107 5.6 121
24 165 6.0 119

dplyr Exercise 2

Using the in-built data set mtcars:

1. Create a new variable which is the product of mpg times wt.

2. Find the mean and median of this new variable, but within each possible value of cyl.
Do you notice something?

mtcars %>%
mutate(mpg_times_wt = (mpg*wt)) %>%
group_by(cyl) %>%
summarise(mean = mean(mpg_times_wt), med = median(mpg_times_wt))

# A tibble: 3 x 3
cyl mean med

<dbl> <dbl> <dbl>
1 4 59.3 55.6
2 6 61.2 61.2
3 8 59.2 55.5
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dplyr - Why use dplyr?

dplyr is generally easier to read and write than base R. The following codes do the same
thing

dplyr:

new_df <- mtcars %>%
mutate(name = rownames(mtcars),

kmpl = mpg * 0.264172 * 1.60934) %>%
filter(mpg > 25,

wt <= 2) %>%
select(name, kmpl, disp, wt)

Base R:

new_df <- mtcars[mtcars$mpg > 25 & mtcars$wt <= 2,]
new_df["kmpl"] <- new_df$mpg * 0.264172 * 1.60934
new_df <- new_df[, c("kmpl", "disp", "wt")]

In particular, group_by and summarise are easy to write with dplyr. They are significantly
harder to write in base R:

dplyr:

new_df <- mtcars %>%
group_by(cyl, gear) %>%
summarise(avg_weight = mean(wt),

sd_weight = sd(wt))

`summarise()` has grouped output by 'cyl'. You can override using the `.groups`
argument.

Base R:

avg_weight <- aggregate(mtcars$wt,
by = list(cylinders = mtcars$cyl,

gears = mtcars$gear),
FUN = mean)

names(avg_weight)[3] <- "Average_weight"
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sd_weight <- aggregate(mtcars$wt,
by = list(cylinders = mtcars$cyl,

gears = mtcars$gear),
FUN = sd)

names(sd_weight)[3] <- "std_dev_weight"

new_df <- merge(avg_weight, sd_weight, by = c("cylinders", "gears"))

Or to count the number of observations within given intervals:

dplyr:

sample_data %>%
mutate(ints = cut(height, breaks= c(140,150, 160, 170, 180, 190), right = F)) %>%
group_by(ints) %>%
summarise(n = n())

# A tibble: 5 x 2
ints n
<fct> <int>

1 [140,150) 3
2 [150,160) 70
3 [160,170) 89
4 [170,180) 52
5 [180,190) 12

Base R:

# put the data in 5 categories
res <- hist(height, plot=FALSE, breaks = c(140,150,160,170,180,190), right = F)
x <- as.table(res$counts) # create the table
nn <- as.character(res$breaks)
# add names to categories: this step is not straightforward
dimnames(x) <- list(paste(nn[-length(nn)], nn[-1],sep="-"))
x

140-150 150-160 160-170 170-180 180-190
3 70 89 52 12
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dplyr - comments and more information

• Cheat sheet for dplyr - https://github.com/rstudio/cheatsheets/blob/main/data-
transformation.pdf

• Online tutorials

– the dplyr website
– the data transformation chapter in “R for Data Science”.

• To go further in your R learning journey, the aforementioned R for Data Science textbook
is one of the most popular and useful resources out there.

Note: you may have noticed on some of the previous slides (e.g., slide 25) that dplyr was
outputting something called a tibble. These are a more modern version of data frames,
designed to work better within the tidyverse ecosystem.

While there are interesting if subtle differences between tibbles and data frames, they should
not concern you much at this stage; you can use and manipulate them in almost the same
way.

Homework

Homework Exercise 1

Using the iris dataset:

• Find all the rows with Sepal.Width greater than 2.7 and then sort by Sepal.Length
• For all the setosa flowers, find the ratio between Sepal.Length and Sepal.Width, call

this new variable ratio and display only columns ratio and Species
• Find the average ratio between Sepal.Length and Sepal.Width for each species of

flower

Homework Exercise 2

Import the dataset sample_data.csv:

• create a new column called BMI, which is calculated by

Weight
Height(𝑚)2

• calculate the average BMI for each of the 6 categories of cooked_fruit_veg for FEMALE
individuals only
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Homework Exercise 3

The built-in dataset ChickWeight records the weights of chicks (in the variable weight), as
well as the type of diet (1, 2, 3 or 4 in the variable Diet).

Provide summary statistics for the weight in diet groups 1 to 4. Can you say for sure that a
given group of chicks is the heaviest?

Home work Exercise 4

In Ed, the dataset motor.df is already loaded in the script on your right. This dataset contains
some information about a large number of vehicle insurance claims, by policy. Perform the
following tasks:

1. Display the first 10 rows of the dataset motor.df, and have a look at the variables names.
2. Use the package dplyr to create a summary table (or “tibble”) which should have two

columns:

• The first reports the occurrence date of the accident, or AccidentDay, but converted to
the ‘date’ format. Hint: use function as.Date().

• The second is named nc and reports, by AccidentDay, the total number of claims on
each day.

3. Use the table created in Q2 as well as function plot() to produce a scatterplot of the
daily numbers of CTP claims (y axis) from the year 2006 to the year 2015 (x axis is
time).

Home work Exercise 5

In Ed, the dataset school.data is already loaded in the script on your right. This dataset
contains some information about every school in Australia (primary and secondary), in the
year 2019.

Use the package dplyr to create a summary table (or “tibble”) called teaching.staff. This
table should have three columns:

• The first reports the School.Sector.
• The second is named nb and reports, by School.Sector, the total number of schools (in

all Australia).
• The third is named mean.students and reports, by School.Sector, the mean of a new

variable which you must create, and which is the ratio of variable Total.Enrolments
divided by Full.Time.Teaching.Staff. Hint: you may need to use argument na.rm
in function mean().
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Hint: the expected result should look like this:
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