Introduction to Statistical Learning

ACTL3142 & ACTL5110 Statistical Machine Learning for Risk and Actuarial Applications

Disclaimer

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

Overview

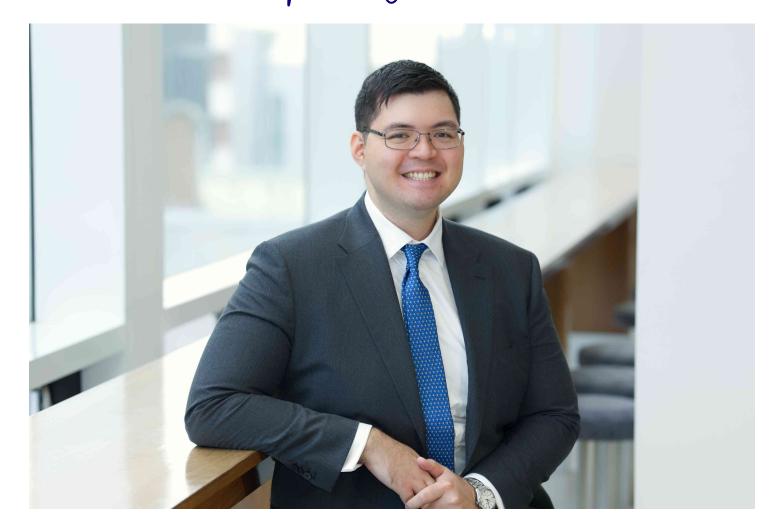
- Overview of the course
- Statistical learning
- Assessing model accuracy

Reading

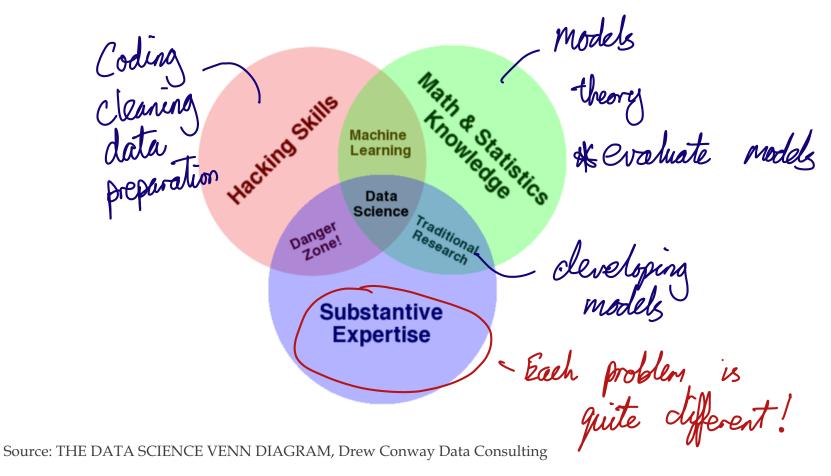
James et al (2021), Chapters 1 and 2

Lecturers

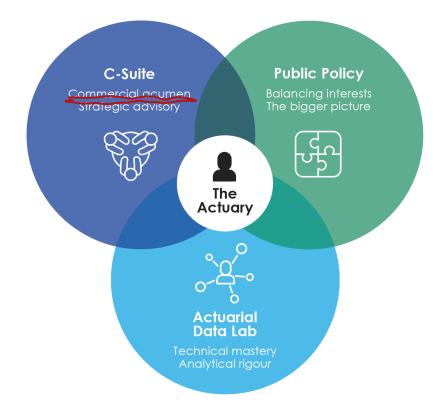
P.a. wong @ unsw.edu.au



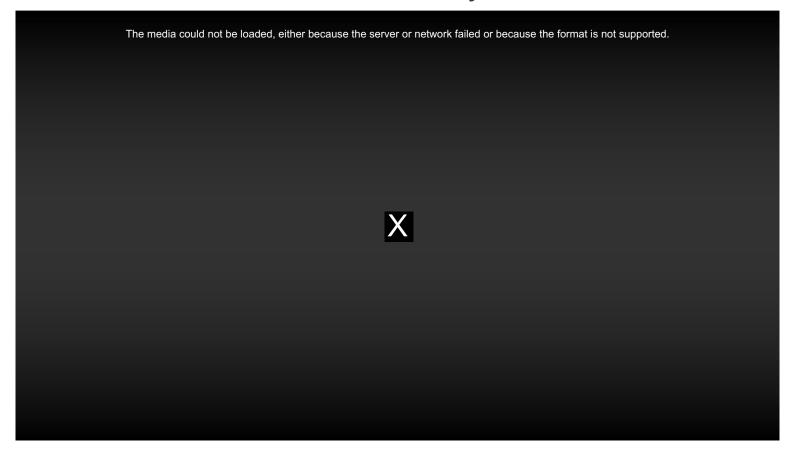
Data Science Skills



Actuaries use data for good



Do data better with an Actuary



Source: Actuaries Insititute

Learning activities

The learning activities of this course involve the following (besides additional self-revision):

assignment

1. Self-study:

- Performing reading of relevant textbook chapters
 Doing lab questions (conceptual and applied)
- Doing lab questions (conceptual and applied)
- 2. Lectures:
 - Engaging in preparations activities for each week's lectures
- 3. Labs:
 - Engaging in preparations activities for each week's lab
 - Actively engaging in the lab sessions + Guest lecture

Course textbook

James, G., Witten, D., Hastie, T., Tibshirani, R., An Introduction to Statistical Learning with Applications in R, Springer, 2nd version, 2021

- Book
 - Electronic copy
 - R labs with detailed explanations
 - A lot of resources including crowdsource solutions to questions
- We will cover most of the material in this book.
- Focus on intuition and practical implementation

Springer Texts in Statistics

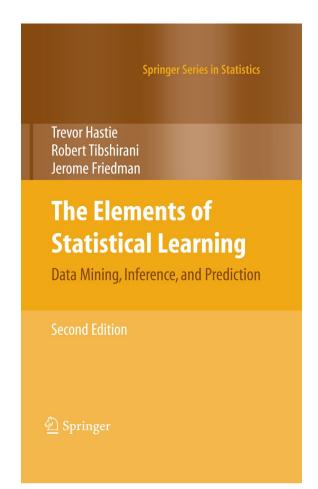
Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Second Fdition

Course textbook - Further references



Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction., Springer, 2009

- This book can serve as reference for those interested in the math behind the methods.
- Available here
- This is not the focus of this course.

Statistical learning

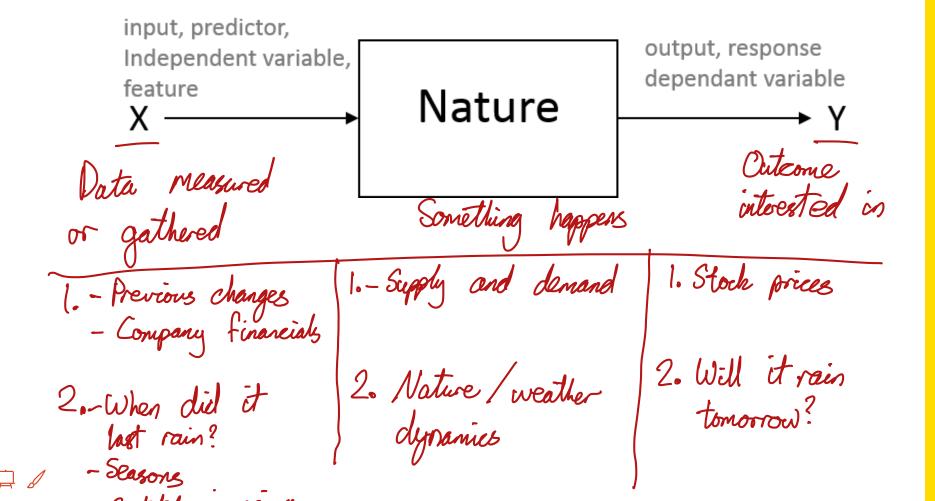
Statistical Learning / Predictive Analytics

- A vast set of tools for understanding data.
- Other names used to refer to similar tools (sometimes with a slightly different viewpoint) - machine learning, predictive analytics
- Techniques making significant impact to actuarial work especially in the How do we analyse? insurance industry
- Historically started with classical linear regression techniques
- Contemporary extensions included
- Contemporary extensions included

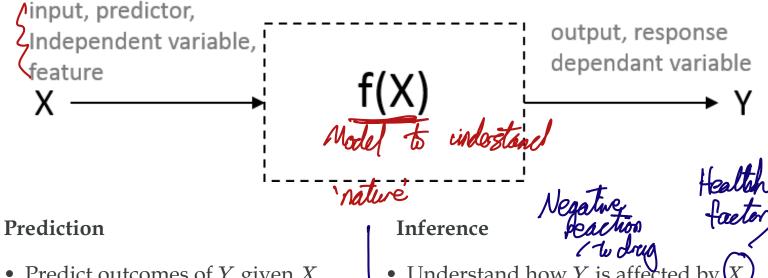
 "Line of best fit"

 better methods to apply regression ideas trees, CLM's, splines
 - non-linear models Trees
 - unsupervised problems Clustering
- Facilitated by powerful computation techniques and also accessible software such as R / fighton

What is statistical (machine) learning?



What is statistical (machine) learning?



- Predict outcomes of *Y* given *X*
- What it means isn't as important, it just needs accurate predictions
- Models tend to be more complex

- Understand how *Y* is affected by *X*
- Which predictors do we add? How are they related?
- Models tend to be simpler

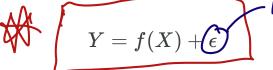
The Two Cultures

	Statistical Learning	Machine Learning
Origin	Statistics	Computer Science
f(X)	Model	Algorithm
Emphasis	Interpretability, precision and uncertainty	Large scale application and prediction accuracy
Jargon	Parameters, estimation	Weights, learning
Confidence interval	Uncertainty of parameters	No notion of uncertainty
Assumptions	Explicit a priori assumption	No prior assumption, we learn from the data

See Breiman (2001) and Why a Mathematician, Statistician, & Machine Learner Solve the Same Problem Differently

What is statistical (machine) learning?

Recall that in regression, we model an outcome against the factors which might affect it



measure or understant

- *Y* is the outcomes, response, target variable
- $X := (X_1, X_2, \dots, X_p)$ are the features, inputs, predictors
- ullet captures measurement error and other discrepancies

· Erros we havent

 \Rightarrow Our objective is to **find** an **appropriate** f for the problem at hand. Harder than it sounds

- What *X*s should we choose?
- Do we want to predict reality (prediction) or explain reality (inference)?
- What's signal and what's noise?

How to estimate f?

- Parametric

of the

ullet Make an assumption about the shape of f

Cows.

- Problem reduced down to estimating a few parameters
 - Works fine with limited data, provided assumption is reasonable
- Assumption strong: tends to miss some signal

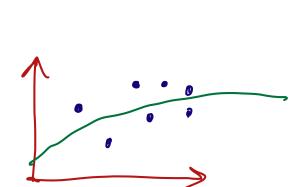
Focus

Non-parametric

• Make no assumption about f's shape

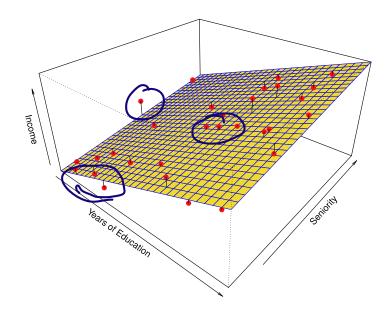
- Involves estimating a lot of "parameters"
 - Need lots of data
- Assumption weak: tends to incorporate some noise
- Be particularly careful re the risk of overfitting

Splines



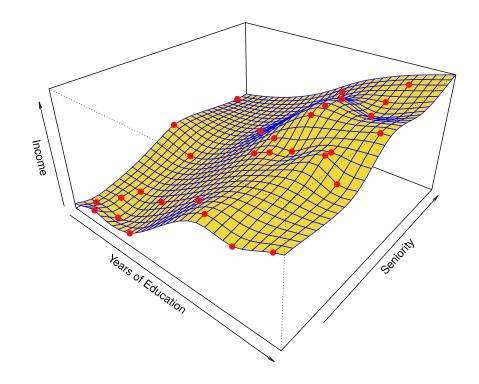
Example: Linear model fit on income data

Using Education and Seniority to explain Income:



- Linear model fitted
- Does a pretty decent job of fitting the data, by the looks of it, but doesn't capture *everything*

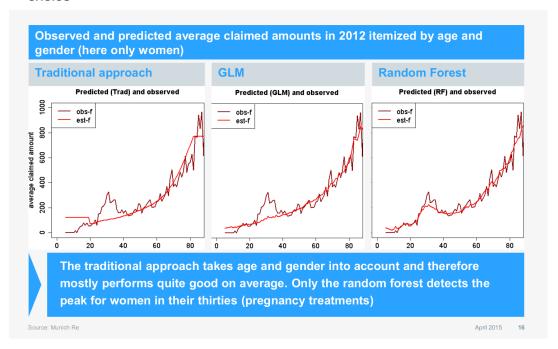
Example: "Perfect" fit on income data



- Non-parametric spline fit
- Fits the data perfectly. This is indicative of overfitting

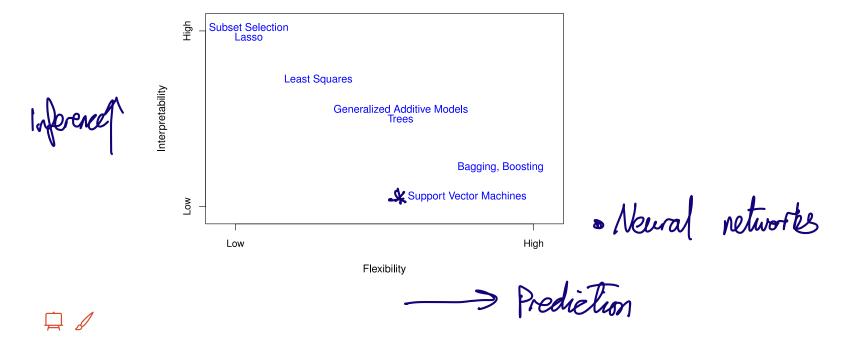
Actuarial Application: Health Insurance model choice

Predicted vs. observed claimed amounts for particular subgroups allows optimal model choice



Tradeoff between interpretability and flexibility

- We will cover a number of different methods in this course
- They each have their own (relative) combinations of interpretability and flexibility:



Discussion Question

Suppose you are interested in prediction. Everything else being equal, which types of methods would you prefer?

· Very lage M.
· Boosted models

Supervised vs unsupervised learning

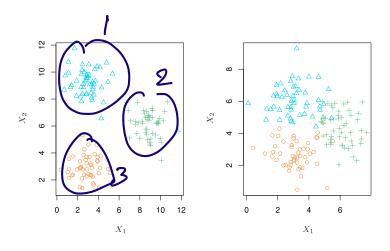
Supervised - Know final outcome

- There is a response (y_i) for each set of predictors (x_{ii})
- e.g. Linear regression, logistic regression
- Can find *f* to boil predictors down into a response

Unsupervised

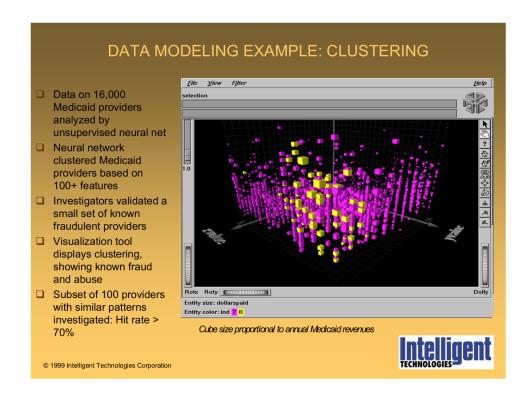
- No y_i , just sets of x_{ji} Types of customers
- e.g. Cluster analysis
- Can only find associations between predictors

Cluster analysis is a form of unsupervised learning

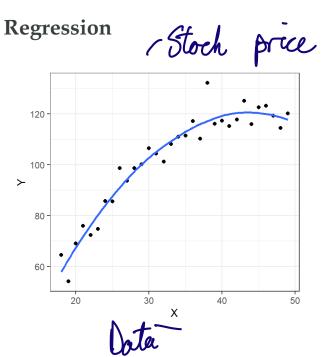


- For illustration we have provided the real groups (in different colours)
- In reality the actual grouping is not known in an unsupervised problem
- Hence idea is to identify the clusters.
- The example of the right will be more difficult to cluster properly

Actuarial Application: predict claim fraud and abuse

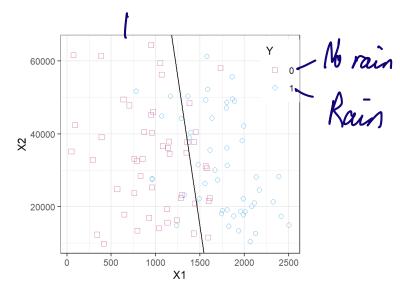


A note re Regression vs Classification problems



- *Y* is quantitative, continuous
- Examples: Sales prediction, claim size
 prediction, stock price modelling

Classification



- *Y* is qualitative, discrete
- Examples: Fraud detection, face recognition, accident occurrence, death

Assessing model accuracy

Assessing model accuracy

- Measuring the quality of fit and examples
 - Training MSETest MSE
- Bias-variance trade-off and examples
- Classification setting and example: K-Nearest Neighbors

Assessing Model Accuracy

- There are often a wide range of possible statistical learning methods that can be applied to a problem
- There is no single method that dominates over all others is all data sets
- How do we assess the accuracy?
 - Quality of Fit: Mean Squared Error

Data trying to model

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- This should be small if predicted responses are close to true responses.
- Note that if the MSE is computed using the data used to fit the model (which is called the training data) then this is more accurately referred to as the **training MSE**.

Data used for model generation

Discussion question

What are some potential problems with using the training MSE to evaluate a model?

What if we take
$$f(x_i) = g_i$$
 as our model?

Model?

Benefits better fits in model (interpolation is best).

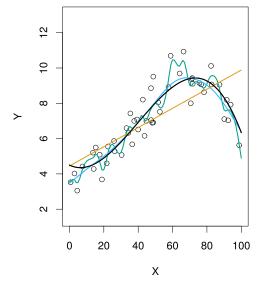
 $f(x_0) \stackrel{?}{=} ??$

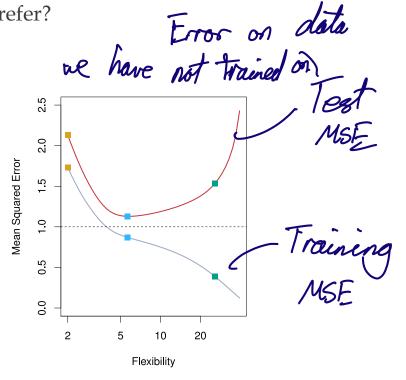
We don't - Probably for away from g_0 know g_0 ?

Discussion question

Consider the example below. The true model is black, and associated 'test' data are identified by circles. Three different fitted models are illustrated in blue, green, and orange. Which would you prefer?

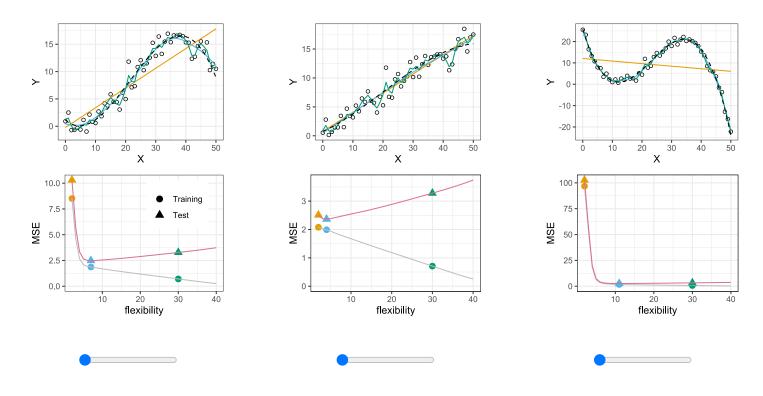
True model





Examples: Assessing model accuracy

The following are the training and test errors for three different problems:



Bias-Variance Tradeoff

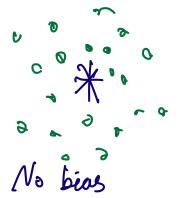
Bias-Variance Tradeoff

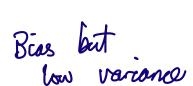
The expected test MSE can be written as:
$$Var(\hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(e)$$

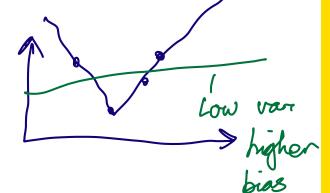
• $Var(\hat{f}(x_0))$: how much \hat{f} would change if a different training set is

- $Var(\hat{f}(x_0))$: how much \hat{f} would change if a different training set is used
- $[\text{Bias}(\hat{f}(x_0))]^2$: how much the model is off by
- Vario: irreducible error Error we connot model

There is often a tradeoff between Bias and Variance

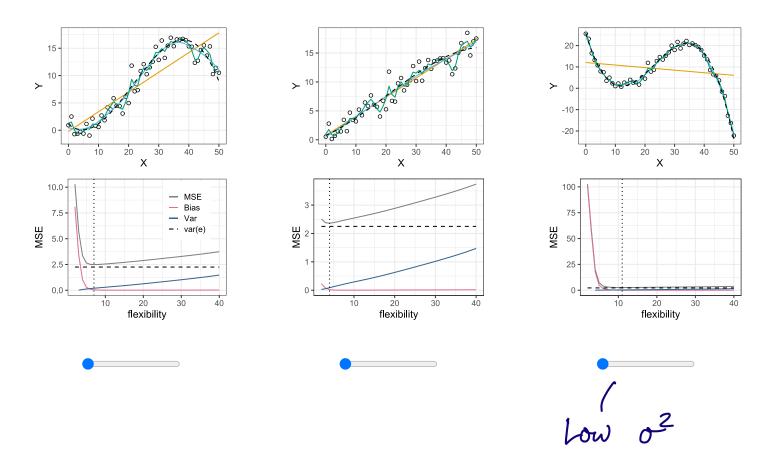






Examples: Bias-variance tradeoff

The following are the Bias-Variance tradeoff for three different problems:



Classification

Objective

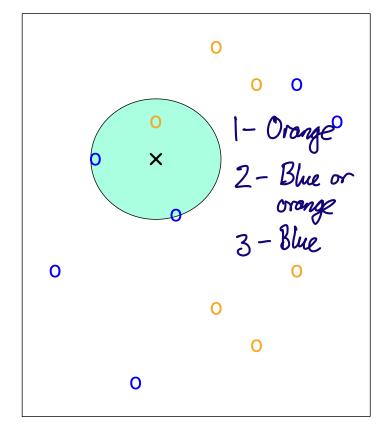
- Place data point into a category (Y) based on its predictors (X_i)
- Test Error is the proportion of times the estimate is wrong

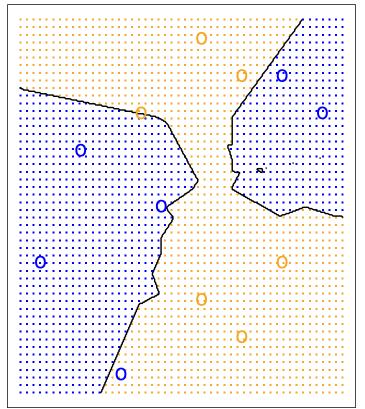
$$Ave\left(I(y_0 \neq \hat{y}_0)\right)$$

Bayes' Classifier

- Assigns a prediction x_0 to the class j which maximises $\mathbb{P}(Y=j|X=x_0)$
- ullet In the case of two classes, this would be the one where $\mathbb{P}(Y=j|X=x_0)>0.5$
- Theorectically the optimum, but in reality do not know the conditional probabilities.
- A simple alternative is the K nearest neighbors (KNN) classifier

K-nearest neighbours - illustration





K-nearest neighbours

K-nearest neighbours

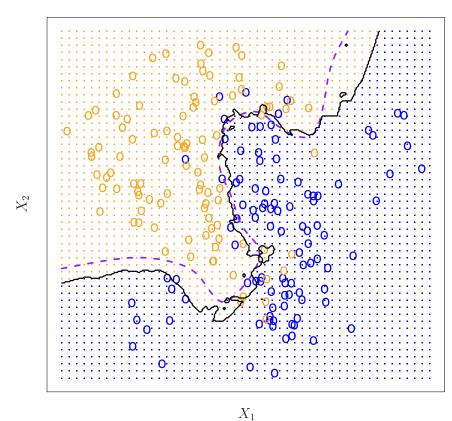
- Looks at a new observation's K-nearest (training) observations
 - In other words, it maximises

$$\mathbb{P}(Y=j|X=x_0) = rac{1}{K}\sum_{i=1}\mathbb{I}(y_i=j)$$

- New observation's category is where the majority of its neighbours lie
- High K: less variance but more bias, fit missing signal too close to a global average
- Low K: less bias but more variance, fit too noisy assuming less relationship between close-by data points than there is
- Intelligent choice of *K* is key: too low and you overfit, too high and you miss important information

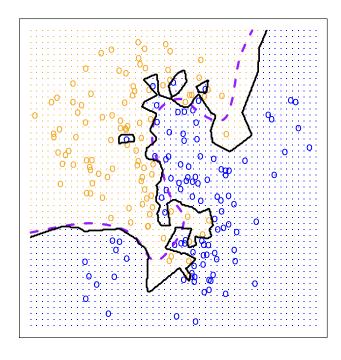
K-nearest neighbours example, K=10

KNN: K=10



K-nearest neighbours example, K=1, K=100

KNN: K=1



KNN: K=100

