
Lab 3: Linear Regression II
Linear Model Selection & Problems with Linear Regression

ACTL3142 and ACTL5110

Questions

Conceptual Questions

1. ⋆ (ISLR2, Q6.1) We perform best subset, forward stepwise, and backward stepwise
selection on a single data set. For each approach, we obtain p + 1 models, containing
0, 1, 2, . . . , p predictors. Explain your answers:

a. Which of the three models with k predictors has the smallest training RSS?

b. Which of the three models with k predictors has the smallest test RSS?

c. True or False:

i. The predictors in the k-variable model identified by forward stepwise are a
subset of the predictors in the (k + 1)-variable model identified by forward
stepwise selection.

ii. The predictors in the k-variable model identified by backward stepwise are a
subset of the predictors in the (k + 1)- variable model identified by backward
stepwise selection

iii. The predictors in the k-variable model identified by backward stepwise are a
subset of the predictors in the (k + 1)- variable model identified by forward
stepwise selection.

iv. The predictors in the k-variable model identified by forward stepwise are a
subset of the predictors in the (k + 1)-variable model identified by backward
stepwise selection.

v. The predictors in the k-variable model identified by best subset are a subset of
the predictors in the (k + 1)-variable model identified by best subset selection.

Solution
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Applied Questions

1. ⋆ (ISLR2, Q6.8) In this exercise, we will generate simulated data, and will then use this
data to perform best subset selection.

a. Use the rnorm() function to generate a predictor X of length n = 100, as well as a
noise vector ϵ of length n = 100.

b. Generate a response vector Y of length n = 100 according to the model

Y = β0 + β1X + β2X2 + β3X3 + ϵ,

where β0, β1, β2, and β3 are constants of your choice.

c. Use the regsubsets() function to perform best subset selection in order to choose
the best model containing the predictors X, X2, . . . , X10. What is the best model
obtained according to Cp, BIC, and adjusted R2? Show some plots to provide
evidence for your answer, and report the coefficients of the best model obtained.
Note you will need to use the data.frame() function to create a single data set
containing both X and Y .

d. Repeat (c), using forward stepwise selection and also using backwards stepwise
selection. How does your answer compare to the results in (c)?

e. Now generate a response vector Y according to the model

Y = β0 + β7X7 + ϵ,

and perform best subset selection. Discuss the results obtained.

Solution

2. ⋆ (ISLR2, Q3.10) This question should be answered using the Carseats data set.

a. Fit a multiple regression model to predict Sales using Price, Urban, and US.

b. Provide an interpretation of each coefficient in the model. Be careful—some of the
variables in the model are qualitative!

c. Write out the model in equation form, being careful to handle the qualitative
variables properly.

d. For which of the predictors can you reject the null hypothesis H0 : βj = 0?

e. On the basis of your response to the previous question, fit a smaller model that only
uses the predictors for which there is evidence of association with the outcome.

f. How well do the models in (a) and (e) fit the data?

g. Using the model from (e), obtain 95% confidence intervals for the coefficient(s).
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h. Is there evidence of outliers or high leverage observations in the model from (e)?

Solution

3. (ISLR2, Q3.13) In this exercise you will create some simulated data and will fit simple
linear regression models to it. Make sure to use set.seed(1) prior to starting part (a) to
ensure consistent results.

a. Using the rnorm() function, create a vector, x, containing 100 observations drawn
from a N(0, 1) distribution. This represents a feature, X.

b. Using the rnorm() function, create a vector, eps, containing 100 observations drawn
from a N(0, 0.25) distribution—a normal distribution with mean zero and variance
0.25.

c. Using x and eps, generate a vector y according to the model

Y = −1 + 0.5X + ϵ. (1)

What is the length of the vector y? What are the values of β0 and β1 in this linear
model?

d. Create a scatterplot displaying the relationship between x and y. Comment on what
you observe.

e. Fit a least squares linear model to predict y using x. Comment on the model
obtained. How do β̂0 and β̂1 compare to β0 and β1?

f. Display the least squares line on the scatterplot obtained in (d). Draw the population
regression line on the plot, in a different color. Use the legend() command to create
an appropriate legend.

g. Now fit a polynomial regression model that predicts y using x and xˆ2 (X2). Is
there evidence that the quadratic term improves the model fit? Explain your answer.

h. Repeat (a)–(f) after modifying the data generation process in such a way that there
is less noise in the data. The model Equation 1 should remain the same. You can
do this by decreasing the variance of the normal distribution used to generate the
error term ϵ in (b). Describe your results.

i. Repeat (a)–(f) after modifying the data generation process in such a way that there
is more noise in the data. The model Equation 1 should remain the same. You can
do this by increasing the variance of the normal distribution used to generate the
error term ϵ in (b). Describe your results.

j. What are the confidence intervals for β0 and β1 based on the original data set, the
noisier data set, and the less noisy data set? Comment on your results.

Solution
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4. ⋆ (ISLR2, Q3.14) This problem focuses on the collinearity problem.

a. Perform the following commands in R:

set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100) / 10
y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)

The last line corresponds to creating a linear model in which y is a function of x1
and x2. Write out the form of the linear model. What are the regression coefficients?

b. What is the correlation between x1 and x2? Create a scatterplot displaying the
relationship between the variables.

c. Using this data, fit a least squares regression to predict y using x1 and xx2. Describe
the results obtained. What are β̂0, β̂1, and β̂2? How do these relate to the true β0,
β1, and β2? Can you reject the null hypothesis H0 : β1 = 0? How about the null
hypothesisH0 : β2 = 0?

d. Now fit a least squares regression to predict y using only x1. Comment on your
results. Can you reject the null hypothesis H0 : β1 = 0?

e. Now fit a least squares regression to predict y using only x1. Comment on your
results. Can you reject the null hypothesis H0 : β1 = 0?

f. Do the results obtained in (c)–(e) contradict each other? Explain your answer.

g. Now suppose we obtain one additional observation, which was unfortunately mis-
measured.

set.seed(1)
x1 <- c(x1, 0.1)
x2 <- c(x2, 0.8)
y <- c(y, 6)

Re-fit the linear models from (c) to (e) using this new data. What effect does this
new observation have on the each of the models? In each model, is this observation
an outlier? A high-leverage point? Both? Explain your answers.

Solution
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Solutions

Conceptual Questions

1. a. Best-subset selection. It will always pick the size-k model which will best fit the
data, in other words, has the lowest RSS. The other two will select the model which
minimises the RSS, given their selections for the k ± 1 model.

b. It’s most likely going to be best-subset, since for a given degree of flexibility, a smaller
training RSS usually leads to a smaller test RSS, but forward and backward-stepwise
could luck out and find a model which works better on the test data.

c. i. True. Forward stepwise adds a predictor to the best-found model of the previous
step. So it will add one predictor to the size-k to get a size-k + 1 model.

ii. True. Backward stepwise removes a predictor from the best-found model of the
previous step. So, it will remove one predictor from the size-k + 1 model to
obtain the “best” size-k model.

iii. False. Forward and backward stepwise can diverge in what they consider the
“best” model. This is due to their different starting positions.

iv. False. Same reasoning as iii.

v. False. Best-subset considers all possible selections of k parameters to find the
best size-k model. It does not consider what the best k − 1 or k + 1 model was.
Hence, the size-k model’s predictors could be entirely different to those of the
size-k + 1’s.

Applied Questions

1. a. set.seed(1)
X <- rnorm(100, 10, 3)
noise <- rnorm(100, 0, 2)

b. Y <- 4 + 3 * X + 2 * Xˆ2 + Xˆ3 + noise

c. myData <- data.frame(
Y = Y, X1 = X, X2 = Xˆ2, X3 = Xˆ3, X4 = Xˆ4, X5 = Xˆ5,
X6 = Xˆ6, X7 = Xˆ7, X8 = Xˆ8, X9 = Xˆ9, X10 = Xˆ10

)
library(leaps)
fit <- regsubsets(Y ~ ., data = myData, nvmax = 10)
summary(fit)
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Subset selection object
Call: regsubsets.formula(Y ~ ., data = myData, nvmax = 10)
10 Variables (and intercept)

Forced in Forced out
X1 FALSE FALSE
X2 FALSE FALSE
X3 FALSE FALSE
X4 FALSE FALSE
X5 FALSE FALSE
X6 FALSE FALSE
X7 FALSE FALSE
X8 FALSE FALSE
X9 FALSE FALSE
X10 FALSE FALSE
1 subsets of each size up to 10
Selection Algorithm: exhaustive

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 ( 1 ) " " " " "*" " " " " " " " " " " " " " "
2 ( 1 ) " " "*" "*" " " " " " " " " " " " " " "
3 ( 1 ) " " "*" "*" " " " " " " " " " " " " "*"
4 ( 1 ) "*" " " "*" " " "*" "*" " " " " " " " "
5 ( 1 ) " " "*" " " "*" "*" "*" "*" " " " " " "
6 ( 1 ) " " "*" "*" "*" " " " " " " "*" "*" "*"
7 ( 1 ) " " "*" " " " " "*" "*" "*" "*" "*" "*"
8 ( 1 ) " " " " "*" "*" "*" "*" "*" "*" "*" "*"
9 ( 1 ) " " "*" "*" "*" "*" "*" "*" "*" "*" "*"
10 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

myData <- data.frame(
Y = Y, X1 = X, X2 = Xˆ2, X3 = Xˆ3, X4 = Xˆ4, X5 = Xˆ5,
X6 = Xˆ6, X7 = Xˆ7, X8 = Xˆ8, X9 = Xˆ9, X10 = Xˆ10

)
library(leaps)
fit <- regsubsets(Y ~ ., data = myData, nvmax = 10)

plot(seq(1, 10), summary(fit)$cp, type = "l")
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It looks like all 3 methods suggest that the 3-variable fit is the best.

summary(fit)$cp # this should give a better/clearer view

[1] 11022.4698919 7.2797918 -0.6713653 0.1801732 2.1193057
[6] 4.0389022 5.9961670 7.9349196 9.7216590 11.0000000

summary(fit)

Subset selection object
Call: regsubsets.formula(Y ~ ., data = myData, nvmax = 10)
10 Variables (and intercept)

Forced in Forced out
X1 FALSE FALSE
X2 FALSE FALSE
X3 FALSE FALSE
X4 FALSE FALSE
X5 FALSE FALSE
X6 FALSE FALSE
X7 FALSE FALSE
X8 FALSE FALSE
X9 FALSE FALSE
X10 FALSE FALSE
1 subsets of each size up to 10
Selection Algorithm: exhaustive
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 ( 1 ) " " " " "*" " " " " " " " " " " " " " "
2 ( 1 ) " " "*" "*" " " " " " " " " " " " " " "
3 ( 1 ) " " "*" "*" " " " " " " " " " " " " "*"
4 ( 1 ) "*" " " "*" " " "*" "*" " " " " " " " "
5 ( 1 ) " " "*" " " "*" "*" "*" "*" " " " " " "
6 ( 1 ) " " "*" "*" "*" " " " " " " "*" "*" "*"
7 ( 1 ) " " "*" " " " " "*" "*" "*" "*" "*" "*"
8 ( 1 ) " " " " "*" "*" "*" "*" "*" "*" "*" "*"
9 ( 1 ) " " "*" "*" "*" "*" "*" "*" "*" "*" "*"
10 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

lm(Y ~ X2 + X3 + X10, data = myData)

Call:
lm(formula = Y ~ X2 + X3 + X10, data = myData)

Coefficients:
(Intercept) X2 X3 X10

9.871e+00 2.426e+00 9.818e-01 5.810e-12

This final linear fit produces our required coefficients. We note that the model
selected includes X10 instead of X1 as in the true model. However, this can be
attributed to the high amount of noise in the data.

d. Repeat the above with method = "forward" and method = "backward" in the
regsubsets function. Alternatively, the step function can also be used here.

attach(myData)

The following object is masked _by_ .GlobalEnv:

Y

step(lm(Y ~ 1), Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10,
direction = "forward"

)

Start: AIC=1397.35
Y ~ 1

Df Sum of Sq RSS AIC
+ X3 1 114757732 42006 608.04
+ X2 1 112602846 2196892 1003.74
+ X4 1 111991290 2808448 1028.30
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+ X5 1 106159807 8639931 1140.67
+ X1 1 103502796 11296942 1167.49
+ X6 1 98769980 16029758 1202.48
+ X7 1 90912846 23886892 1242.37
+ X8 1 83280410 31519329 1270.09
+ X9 1 76246003 38553735 1290.24
+ X10 1 69964262 44835476 1305.33
<none> 114799738 1397.35

Step: AIC=608.04
Y ~ X3

Df Sum of Sq RSS AIC
+ X2 1 41623 383 140.19
+ X1 1 41018 988 235.06
+ X4 1 38889 3117 349.94
+ X5 1 36724 5282 402.70
+ X6 1 34461 7545 438.34
+ X7 1 32254 9752 464.01
+ X8 1 30178 11828 483.30
+ X9 1 28269 13737 498.27
+ X10 1 26537 15469 510.14
<none> 42006 608.04

Step: AIC=140.19
Y ~ X3 + X2

Df Sum of Sq RSS AIC
+ X10 1 37.596 345.04 131.85
+ X9 1 37.224 345.41 131.96
+ X8 1 36.673 345.96 132.12
+ X7 1 35.924 346.71 132.33
+ X6 1 34.960 347.68 132.61
+ X5 1 33.771 348.87 132.95
+ X4 1 32.355 350.28 133.36
+ X1 1 26.801 355.84 134.93
<none> 382.64 140.19

Step: AIC=131.85
Y ~ X3 + X2 + X10

Df Sum of Sq RSS AIC
<none> 345.04 131.85
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+ X9 1 0.234893 344.81 133.78
+ X1 1 0.201465 344.84 133.79
+ X8 1 0.194667 344.85 133.79
+ X7 1 0.145658 344.90 133.81
+ X6 1 0.091731 344.95 133.82
+ X5 1 0.040675 345.00 133.84
+ X4 1 0.005680 345.04 133.85

Call:
lm(formula = Y ~ X3 + X2 + X10)

Coefficients:
(Intercept) X3 X2 X10

9.871e+00 9.818e-01 2.426e+00 5.810e-12

step(lm(Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10), Y ~ .,
direction = "backward"

)

Start: AIC=143.27
Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X1 1 2.7265 338.97 142.07
- X2 1 2.8364 339.08 142.11
- X3 1 2.9696 339.21 142.15
- X4 1 3.0773 339.32 142.18
- X5 1 3.1874 339.43 142.21
- X6 1 3.2898 339.53 142.24
- X7 1 3.3841 339.63 142.27
- X8 1 3.4702 339.71 142.29
- X9 1 3.5485 339.79 142.32
- X10 1 3.6194 339.86 142.34
<none> 336.24 143.27

Step: AIC=142.07
Y ~ X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X2 1 0.80571 339.78 140.31
- X4 1 1.02949 340.00 140.38
- X3 1 1.03604 340.01 140.38
- X5 1 1.07147 340.04 140.39
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- X6 1 1.10354 340.07 140.40
- X7 1 1.12948 340.10 140.41
- X8 1 1.15180 340.12 140.41
- X9 1 1.17205 340.14 140.42
- X10 1 1.19094 340.16 140.43
<none> 338.97 142.07

Step: AIC=140.31
Y ~ X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X10 1 0.5185 340.30 138.46
- X9 1 0.5352 340.31 138.47
- X8 1 0.5652 340.34 138.48
- X7 1 0.6169 340.39 138.49
- X6 1 0.7065 340.48 138.52
- X5 1 0.8712 340.65 138.57
- X4 1 1.2277 341.00 138.67
- X3 1 4.5218 344.30 139.63
<none> 339.78 140.31

Step: AIC=138.46
Y ~ X3 + X4 + X5 + X6 + X7 + X8 + X9

Df Sum of Sq RSS AIC
- X9 1 0.1097 340.41 136.50
- X8 1 0.2031 340.50 136.52
- X7 1 0.3659 340.66 136.57
- X6 1 0.6572 340.95 136.66
- X5 1 1.2250 341.52 136.82
- X4 1 2.5848 342.88 137.22
<none> 340.30 138.46
- X3 1 21.8581 362.15 142.69

Step: AIC=136.5
Y ~ X3 + X4 + X5 + X6 + X7 + X8

Df Sum of Sq RSS AIC
<none> 340.41 136.50
- X8 1 7.536 347.94 136.69
- X7 1 9.306 349.71 137.19
- X6 1 11.903 352.31 137.93
- X5 1 16.360 356.76 139.19
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- X4 1 26.328 366.73 141.95
- X3 1 193.910 534.32 179.58

Call:
lm(formula = Y ~ X3 + X4 + X5 + X6 + X7 + X8)

Coefficients:
(Intercept) X3 X4 X5 X6 X7

1.157e+01 2.389e+00 -3.353e-01 4.141e-02 -2.789e-03 9.721e-05
X8

-1.372e-06

Note that the forward direction gives the same model as best-subset selection but
the backward direction gives a different model!

e. For ease, we can just set the following and rerun the above code.

myData["Y"] <- 10 + 2 * Xˆ7 + noise

In this case, it seems that the best-subset algorithm produces the best model to
be the 3-predictor model, with X6, X7 and X8 as predictors. Lasso has forced some
predictors to zero but it still retains 5 predictors and has not done well in this case.

2. a. library(ISLR2)
fit <- lm(Sales ~ Price + Urban + US, data = Carseats)

b. fit <- lm(Sales ~ Price + Urban + US, data = Carseats)
summary(fit)

Call:
lm(formula = Sales ~ Price + Urban + US, data = Carseats)

Residuals:
Min 1Q Median 3Q Max

-6.9206 -1.6220 -0.0564 1.5786 7.0581

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
Price -0.054459 0.005242 -10.389 < 2e-16 ***
UrbanYes -0.021916 0.271650 -0.081 0.936
USYes 1.200573 0.259042 4.635 4.86e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 2.472 on 396 degrees of freedom
Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16

Price: significant and potentially large. Higher price is associated with lower sales.

Urban: no significant impact on sales (high p-value).

US: effect significant. US stores tend to have higher sales than non-US.

c. Sales = 13.043 - 0.0545 Price - 0.0219 I(Urban=Yes) + 1.2006 I(US=Yes)

d. Price, US

e. fit2 <- lm(Sales ~ Price + US, data = Carseats)
summary(fit2)

Call:
lm(formula = Sales ~ Price + US, data = Carseats)

Residuals:
Min 1Q Median 3Q Max

-6.9269 -1.6286 -0.0574 1.5766 7.0515

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
Price -0.05448 0.00523 -10.416 < 2e-16 ***
USYes 1.19964 0.25846 4.641 4.71e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.469 on 397 degrees of freedom
Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16

f. About the same: the R2 statistic for both is 0.2393. We prefer (e), though, since it
has fewer predictors.

g. fit2 <- lm(Sales ~ Price + US, data = Carseats)
confint(fit2)

2.5 % 97.5 %
(Intercept) 11.79032020 14.27126531
Price -0.06475984 -0.04419543
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USYes 0.69151957 1.70776632

h. par(mfrow = c(2, 2))
plot(fit2)
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None of the studentised residuals are far outside of the (−3, 3) range, so there are
no clear outliers. Some points have a leverage which exceeds 2 × 3/400 = 0.015, so
there are some high-levered points.

3. a. x <- rnorm(100)

b. eps <- rnorm(100, 0, sqrt(0.25))

c. y <- -1 + 0.5 * x + eps

y is 100 long. β0 = −1, β0 = 0.5.

d. plot(x, y)
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Points are approximately on an increasing straight line.

e. fit <- lm(y ~ x)
summary(fit)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-1.37090 -0.28070 -0.00874 0.33987 0.92421

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.97578 0.04955 -19.69 <2e-16 ***
x 0.55311 0.04813 11.49 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4953 on 98 degrees of freedom
Multiple R-squared: 0.574, Adjusted R-squared: 0.5697
F-statistic: 132.1 on 1 and 98 DF, p-value: < 2.2e-16
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The β0 estimate is within 1 standard error, and the β1 estimate is within 1.1.
standard errors.

f. plot(x, y)
abline(-1, 0.5)
abline(fit$coefficients[1], fit$coefficients[2], col = "red")
legend("topleft",

legend = c("true", "fitted"), lty = 1,
col = c("black", "red")

)
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g. fit <- lm(y ~ x + I(xˆ2))
summary(fit)

Call:
lm(formula = y ~ x + I(x^2))

Residuals:
Min 1Q Median 3Q Max

-1.37065 -0.27658 -0.01063 0.32886 0.96560

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.96391 0.05986 -16.104 <2e-16 ***
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x 0.55096 0.04872 11.309 <2e-16 ***
I(x^2) -0.01114 0.03120 -0.357 0.722
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4975 on 97 degrees of freedom
Multiple R-squared: 0.5746, Adjusted R-squared: 0.5658
F-statistic: 65.51 on 2 and 97 DF, p-value: < 2.2e-16

No. The adjusted R2 is higher, indicating the extra term does not have significant
explanatory power.

h. set.seed(1)
x <- rnorm(100)
y <- 2 * x + rnorm(100)
x <- rnorm(100)
eps <- rnorm(100, 0, 0.1)
y <- -1 + 0.5 * x + eps
fit2 <- lm(y ~ x)
plot(x, y)
abline(-1, 0.5)
abline(fit2$coefficients[1], fit2$coefficients[2], col = "red")
legend("topleft",

legend = c("true", "fitted"), lty = 1,
col = c("black", "red")

)
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The fitted model is closer to the true model.

i. set.seed(1)
x <- rnorm(100)
y <- 2 * x + rnorm(100)
x <- rnorm(100)
eps <- rnorm(100, 0, 0.5)
y <- -1 + 0.5 * x + eps
fit3 <- lm(y ~ x)
summary(fit)

Call:
lm(formula = y ~ x + I(x^2))

Residuals:
Min 1Q Median 3Q Max

-1.37065 -0.27658 -0.01063 0.32886 0.96560

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.96391 0.05986 -16.104 <2e-16 ***
x 0.55096 0.04872 11.309 <2e-16 ***
I(x^2) -0.01114 0.03120 -0.357 0.722
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4975 on 97 degrees of freedom
Multiple R-squared: 0.5746, Adjusted R-squared: 0.5658
F-statistic: 65.51 on 2 and 97 DF, p-value: < 2.2e-16

plot(x, y)
abline(-1, 0.5)
abline(fit3$coefficients[1], fit3$coefficients[2], col = "red")
legend("topleft",

legend = c("true", "fitted"), lty = 1,
col = c("black", "red")

)

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

x

y

true
fitted

The fitted model is further away from the true model.

j. confint(fit) # noise=0.25

2.5 % 97.5 %
(Intercept) -1.08270792 -0.84510882
x 0.45427135 0.64765478
I(x^2) -0.07306626 0.05079419

confint(fit2) # noise=0.1
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2.5 % 97.5 %
(Intercept) -1.0148210 -0.9754890
x 0.4915195 0.5297242

confint(fit3) # noise=0.5

2.5 % 97.5 %
(Intercept) -1.0741052 -0.8774448
x 0.4575975 0.6486210

The confidence interval is wider when the noise is larger.

4. a. β0 = 2, β1 = 2, β2 = 0.3

set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100) / 10
y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)

b. cor(x1, x2)

[1] 0.8351212

plot(x1, x2)
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c. summary(lm(y ~ x1 + x2))
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Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-2.8311 -0.7273 -0.0537 0.6338 2.3359

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1305 0.2319 9.188 7.61e-15 ***
x1 1.4396 0.7212 1.996 0.0487 *
x2 1.0097 1.1337 0.891 0.3754
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.056 on 97 degrees of freedom
Multiple R-squared: 0.2088, Adjusted R-squared: 0.1925
F-statistic: 12.8 on 2 and 97 DF, p-value: 1.164e-05

The β1, β2 estimates are far off the true values. We can reject the null hypothesis
that β1 = 0 at the 95

d. summary(lm(y ~ x1))

Call:
lm(formula = y ~ x1)

Residuals:
Min 1Q Median 3Q Max

-2.89495 -0.66874 -0.07785 0.59221 2.45560

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1124 0.2307 9.155 8.27e-15 ***
x1 1.9759 0.3963 4.986 2.66e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.055 on 98 degrees of freedom
Multiple R-squared: 0.2024, Adjusted R-squared: 0.1942
F-statistic: 24.86 on 1 and 98 DF, p-value: 2.661e-06

22



All coefficients are significant. The estimate of β0 is within 1 standard deviation
of the true value. The estimate of β1 is within 1 standard deviation of the true
effective value.

e. summary(lm(y ~ x2))

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-2.62687 -0.75156 -0.03598 0.72383 2.44890

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3899 0.1949 12.26 < 2e-16 ***
x2 2.8996 0.6330 4.58 1.37e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.072 on 98 degrees of freedom
Multiple R-squared: 0.1763, Adjusted R-squared: 0.1679
F-statistic: 20.98 on 1 and 98 DF, p-value: 1.366e-05

All coefficients are significant. The estimate of β0 is within 2 standard deviations
of the true value. The estimate of β1 is within 1 standard deviation of the true
effective value.

f. No. Due to the collinearity, it is difficult to distinguish between the effect of x1 and
x2 on y when they are regressed together. When regressed separately, the effect is
much easier to see.

g. In all cases, the coefficient estimate for x1 has decreased errantly, and that for x2 has
increased errantly. For the full model and for the x2 only model, it is seen only has
a high-leverage point. For the x1 only model, it is seen as a high-leverage outlier.
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