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Linear Regression

A classical and easily applicable approach for supervised learning
Usetul tool for predicting a quantitative response

Model is easy to interpret

Many more advanced techniques can be seen as an extension of linear
regression
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Lecture Outline

e Simple Linear Regression

* Multiple Linear Regression

* Categorical predictors

* R Demo

e ANOVA

e Linear model selection

* Potential problems with Linear Regression
* So what's next

* Appendices
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Overview

Suppose we have pairs of data (y1, 1), (y2, 22), ---, (Yn, T, ) and we want to
predict values of y; based on z;?

 We could do a linear prediction: y; = ma; + b.
e We could do a quadratic prediction: y; = aa@Jr bz; + c.

e We could do a general non-linear function prediction: y; = f(z;).

All of these methods are examples of models we can specify. Let’s focus on the
linear prediction. Some questions:

 How do we choose m and b? There are infinite possibilities?

 How do we know whether the line is a “good” fit? And what do we mean by
‘good’?
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Overview

Simple linear regression is a linear prediction.

e Predict a quantitative response Y = (y,...,¥,) ' based on a single predictor

variable X =

(1, ...,a:n)T

e Assume the ‘true’ relationship between X and Y is linear:

where € = (e, ...

Y = 50 +B1X @
lrl&@/#' 3

€)' is an error term with certam assumptions on it for

identifiability reasons.
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Advertising Example

sales =~ By + (1 X TV
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Assumptions on the errors

* Weak assumptions

E(g]X) =0, V(g|X)=o0?
and Cov(e;, €j|X) =0

fori=1,2,3,...,n; for all i #£ j.

In other words, errors have zero mean, common variance and are
conditionally uncorrelated. Parameters estimation: Least Squares

e Strong assumptions
&:| X " N(0, 02)

fori =1,2,3,...,n. In other words, errors are i.i.d. Normal random variables
with zero mean and constant variance. Parameters estimation: Maximum
Likelihood or Least Squares
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Model estimation

e We have paired data (y1, 1), ---, (Yn, n)-

e We assume there is a “true’ relationship between the y; and z; described as

Y ::/30'+'/31)('+'€7

* And we assume e satisfies either the weak or strong assumptions.

e How do we obtain estimates 3, and 3;? If we have these estimates, we can
make predictions on the mean:

U; = Elyi| X]| = E|Bo + przi + €| X]
— Bo + lei

where we used the fact that E|¢;| X| = 0 and we estimate §; by /Bj.

7/100
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Least Squares Estimates (LSE)

* Most common approach to estimating Bg and Bl
7.8

e Minimise the residual sum of squares (RSS) %
n n //
RSS =) (4 —8:)° =D (¥ —fo— frz:)’

1=1 1=1 A /\

éj‘ 870( = ? (7([-—232

* The least square coefficient estimates are

n

B, = > i1 (@i — Z4) (yi — W) _ Szy
Zyzl (z; — 24)? See
Bo =9 — b1z

whereg= 13"  y;andz =L > " ;. Seeslide on S;,, Sz, and sample
(co-)variances. Proof: See Lab questions.

LS Demo
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Least Squares Estimates (LSE) - Properties
Under the weak assumptions we have unbiased estimators: ;T el %

E[foX] = and E[f|X] =5 @

An (unbiased) estimator of ¢* is given by:

2?21 (yz — (Bo + 81%‘))2

n— 2

82:

Proof: See Lab questions.

What does this mean? Using LSE obtains on average the correct values of S
and f; if the assumptions are satisfied.

How confident or certain are we in these estimates?
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. ) - 2,71 X:_E'IOHOO
Least Squares Estimates (LSE) - Uncertainty Ske = 2, (072

Under the weak assumptions we have that the (co-)variance of the parameters

is given by:
A o 1 T2 L l 72
Var (ﬂ()'X) 7 (n i S (@i —T)) 7 \n i Siz
—SE(6)?
~ 0'2 0'2 ~
\% X) = = — = SE(f1)’
- (ﬁ1| ) > =2 S (6
zo? To?

Cov (BO) Bl|X) Sr(zi—7)? Sk

Proof: See Lab questions. Verify yourself all three quantities goes to 0 as n gets
larger.
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Maximum Likelihood Estimates (MLE)

* In the regression model there are three parameters to estimate: gy, 81, and o2,

e Under the strong assumptions (i.i.d Normal RV), the joint density of
Y1,Ys,...,Y, is the product of their marginals (independent by assumption)
so that the likelihood is:

— 1 )
f(y;ﬂoaﬂlaa)z—nlog( ZWU)—T‘Q (yi — (Bo + Brz:))" -

1=1

i ii.d.

Proof: Since Y = By + 11X + ¢, where ¢; Lk N(0,0?%), theny; ~
N (Bo + B1zi, 0?). The result follows.

11 /100
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Maximum Likelihood Estimates (MLE)

Partial derivatives set to zero give the following MLEs:

s D (i —Z)(yi —Y) _ Suy

S Y R
Bo =Y — BT,

and

n

TMLE = % Z (yz - (Bo + Blwz’))2-

1=1

e Note that the parameters 3y and ; have the same estimators as that produced
from Least Squares.

e However, the MLE 62 is a biased estimator of o?2.

e In practice, we use the unbiased variant s? (see slide).

12/100
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Interpretation of parameters

How do we interpret a linear regression model such as 8, = 1 and B,: —0.5?

e The intercept parameter f, is interpreted as the value we would predict if
r; = 0.

= BEg, predicty; =1ifz; =0

e The slope parameter j3; as the expected change in the mean-response of y; for
a 1 unit increase in z;.

= E.g., we would expect y; to decrease on average by —0.5 for every 1 unit
Increase in x;.
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Example 1

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,1) with n = 30.

Estimates of Beta © and Beta 1:

1.309629 -0.5713465
C—— T

Standard error of the estimates:
0.346858 0.05956626

Scatter Plot with OLS Line (o =1, n = 30)

o — ° —— Predicted Line
== True Line

Y values

X values
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Example 2

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,1) with n = 5000.
=

Estimates of Beta_0 and Beta_1:

1.028116 -0.5057372
[ _
Standard error of the estimates:

0.02812541 0.00487122
(—

Scatter Plot with OLS Line (o =1, n = 5000)

¥ 7 ¢ —— Predicted Line
== True Line

Y values

X values
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Example 3

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
. S—T
e ~ N(0,100) with n = 30.

Estimates of Beta © and Beta 1:

-2.19991 -0.4528679
C=——=r

Standard error of the estimates:
3.272989 0.5620736

Scatter Plot with OLS Line (6 = 10, n = 30)

. L —— Predicted Line
== True Line
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Example 4

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,100) with n = 5000.

Estimates of Beta_0 and Beta_1:
1.281162 -0.5573716
———— S—
Standard error of the estimates:

0.2812541 0.0487122
—— T

Scatter Plot with OLS Line (o = 10, n = 5000)

s o e °* ® . e —— Predicted Line
° o ° o - - i
) .‘.. o, . . *. .: True Line
N ol ot . s ¢ o
’ .‘ 2 " .‘ ‘ - A . o e o 0
Cx . 9 \ N 30 SRR a3 0L, N ' Aot S % ‘!

Y values
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|
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Example 5

The below data was generated by Y = 1 — 40 x X + € where X ~ U|0, 10] and
e ~ N(0,100) with n = 30.

Estimates of Beta © and Beta 1:
4.096286 -40.71346

Standard error of the estimates:
3.46858 0.5956626

SO/Q%% Ex 3_

Scatter Plot with OLS Line (6 = 10, n = 30)
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Assessing the models

e How do we know which model estimates are reasonable?

= Hstimates for examples 1, 2 and 4 seem very good (low bias and low
standard error)

= However we are less confident in example 3 (low bias but high standard
error)

= Pretty confident in example 5 despite a similar standard error to example
3.

» Can we quantify this uncertainty in terms of confidence intervals /
hypothesis testing?

e Consider the next example, it has low variance but it doesn’t look ‘right’.

19/100
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Example 6

The below data was generated by Y = 1 + 0.2 x X? + e where X ~ U|[0,10] and
e ~ N(0,0.01) with n = 30.

Estimates of Beta_0 and Beta_1:
-2.32809 2.000979

Variances of the estimates:
0.01808525 0.0005420144

Scatter Plot with OLS Line (¢ = 0.1, n = 500)

Q - —— Predicted Line
== True Line
o0 _|
[72]
(0]
=
g o |
>_ A
o -
I I I I I I
0 2 4 6 8 10

X values
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Assessing the Accuracy I
e How to assess the accuracy of the coefficient estimates? In particular, consider
the following questions:
= What are the confidence intervals for 8y and 31?

= How to test the null hypothesis that there is no relationship between X
and Y?

= How to test if the influence of the exogenous variable (X) on the
endogenous variable (Y) is larger/smaller than some value?

@ Note

For inference (e.g. confidence intervals, hypothesis tests), we need the strong assumptions!

21/100
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Assessing the Accuracy of the Coefficient

Estimates - Confidence Intervals

Using the strong assumptions, a 100 (1 — «) % confidence interval (CI) for 5,
and resp. for fy, are given by:

e for fpi: e for fy:
B £t ° 1
1 1-a/2n—2 ° A T
Sze +t1 oo o St/ —
: Bo 1—a/2,n—2 S\/n + S
SE(S:) \ ~ 4

See rationale slide.

22 /100
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope

e When we want to test whether the exogenous variable has an influence on the
endogenous variable or if the influence is larger/smaller than some value.

* For testing the hypothesis

Hy:B1=031 vs Hi:B# B

for some constant Bl, we use the test statistic:

t(Bl)_ 181_181 /81_/81

N SE(Bl) N (S/\/S—ww)

which has a ¢,y distribution under the Hj (see rationale slide).

e The construction of the hypothesis test is the same for fy.

23/100
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope V= o+ Fo¢

The decision rules under various alternative hypotheses are summarized below.

Decision Making Procedures for Testing Hy : 81 = B

Alternative H; Reject Hy in favor of H; if
By # By ‘t (31)' > 11 a/2,n—2

B > fi t (31) > t1—an-2

B < B t (Bl) < —t1—an-2

e Typically only interested in testing Hy : 81 = 0 vs. H; : 81 # 0, as this informs
us whether our f; is significantly different from O.

» Le, including the slope parameter is worth it!

e Similar construction for f test, and again typically only test against 0.
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Example 1 - Hypothesis testing

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,1) with n = 30.

Call: _ [M 05 F{}c;%’ﬂ Qo a/) /MZ[E/

Im(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max
-1.8580 -0.7026 -0.1236 ©0.5634 1.8463

\

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 1.30963 0.34686 3.776 0.000764 ***

X -0.57135 0.05957 -9.592 2.4e-10 ***

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9738 on 28 degrees of freedom
Multiple R-squared: 0.7667, Adjusted R-squared: ©0.7583
F-statistic: 92 on 1 and 28 DF, p-value: 2.396e-10

Scatter Plot with OLS and True Lines (6 = 1, n = 30)
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Example 2 - Hypothesis testing

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,1) with n = 5000.

Call:
Im(formula = Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-3.1179 -0.6551 -0.0087 ©.6655 3.4684

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.028116 ©.028125 36.55 <2e-16 ***
X -0.505737 0.004871 -103.82 <2e-16 ***

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9945 on 4998 degrees of freedom
Multiple R-squared: ©.6832, Adjusted R-squared: ©0.6831
F-statistic: 1.078e+04 on 1 and 4998 DF, p-value: < 2.2e-16

Scatter Plot with OLS Line (¢ = 1, n = 5000)
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Example 3 - Hypothesis testing

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,100) with n = 30.

Call:
Im(formula = Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-20.306 -5.751 -2.109 5.522 27.049

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -2.1999 3.2730 -0.672 a.507
X -0.4529  0.5621 -0.806 ((0.427]

Residual standard error: 9.189 on 28 degrees of freedom
Multiple R-squared: 0.02266, Adjusted R-squared: -0.01225
F-statistic: ©.6492 on 1 and 28 DF, p-value:/®

Scatter Plot with OLS Line (¢ = 10, n = 30)

20

10

-10

-20
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Example 4 - Hypothesis testing

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,100) with n = 5000.

Call:
Im(formula = Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-31.179 -6.551 -0.087 6.655 34.684

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.28116 0.28125 4.555 5.36e-06 ***
X -0.55737 0.04871 -11.442 < 2e-16 ***

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 9.945 on 4998 degrees of freedom
Multiple R-squared: ©0.02553, Adjusted R-squared: ©.02533
F-statistic: 130.9 on 1 and 4998 DF, p-value: < 2.2e-16

Scatter Plot with OLS Line (¢ = 10, n = 5000)

30 20 <10 0 10 20 30
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Example 5 - Hypothesis testing

The below data was generated by Y = 1 — 40 x X + € where X ~ U|0, 10] and
e ~ N(0,100) with n = 30.

Call:
Im(formula = Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-18.580 -7.026 -1.236 5.634 18.463

Coefficients: /1/04- y ‘ g ;UU"I. O
Estimate Std. Pr(>|t]) ’

Error t value

(Intercept) 4.0963 3.4686 1.181 0.24
X -40.7135 0.5957 -68.350 <2e-16 ***
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 9.738 on 28 degrees of freedom
Multiple R-squared: ©0.994, Adjusted R-squared: ©0.9938
F-statistic: 4672 on 1 and 28 DF, p-value: < 2.2e-16

Scatter Plot with OLS Line (¢ = 10, n = 5000)

-100
L

400 300 -200
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Example 6 - Hypothesis testing

The below data was generated by Y = 1 + 0.2 x X? + e where X ~ U|[0,10] and
e ~ N(0,0.01) with n = 30.

Call:
Im(formula = Y ~ X) /

Residuals:
Min 1Q Median 3Q Max
-1.8282 -1.3467 -0.4217 1.1207 3.4041

v

Coefficients:
Estimate Std. Error t value Pr(>|t]) 1////
(Intercept) -2.32809 0.13448 -17.31 <2e-16 ***
X 2.00098 0.02328 85.95 <2e-16 ***
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 1.506 on 498 degrees of freedom
Multiple R-squared: ©.9368,.” Adjusted R-squared: ©.9367
F-statistic: 7387 Zi/i/ind 498 DF, p-value: < 2.2e-16 L///’

Scatter Plot with OLS Line (6 = 0.1, n = 500)
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Summary of hypothesis tests

Below is the summary of the hypothesis tests for whether 3; are statistically
different from O for the six examples at the 5% level.

1 2 3 4 5 6
B Y YN Y N Y
B Y YN Y Y Y

Does that mean the models that are significant at 5% for both 5y and 3; are
equivalently ‘good” models?

e No! Example 6 is significant but clearly the underlying relationship is not
linear.
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Assessing the accuracy of the model
We have the following so far:
e Data plotting with model predictions overlayed.

e Estimates of a linear model coefficients 8, and f;.

e Standard errors and hypothesis tests on the coefficients.

But how do we assess whether a model is “good” or “accurate’? Example 5 looks
arguably the best while clearly example 6 is by far the worst.

32/100
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Assessing the Accuracy of the Model

Partitioning the variability is used to assess how well the linear model explains

the trend in data: g
V4
_ N N _ = 2
vi—y = (- + (Gi—-7). I/M E[ (X"EC{’) )J
N—— N—— N——
total deviation = unexplained deviation  explained deviation
We then obtain:
n n n
_\2 ~ N2 NN
(vi—9)" =) (Wi—0)"+)> (G—-9),
i=1 i=1 i=1
TSS RSS SSM
where:

e TSS: total sum of squares;

e RSS: sum of squares error or residual sum of squares;

e SSM: sum of squares model (sometime called regression).

-y

Proof: See Lab questions
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Assessing the Accuracy of the Model

Interpret these sums of squares as follows:

e TSSis the total variability in the absence of knowledge of the variable X. It is
the total square deviation away from its average;

e RSSis the total variability remaining after introducing the effect of X;

* SSMis the total variability “explained” because of knowledge of X. g@@
This partitioning of the variability is used in ANOVA tables: ‘A‘A/ O\/A .
Source Sum of squares DoF Mean square /l;\
Regression SSM =" ,(9;—y)> DFM=1 MSM= 23X \\l\ﬁssl\Ed
Error RSS=Y" (yi—9:)? DFE=n-2 MSE= 22 \‘/
Total TSS=>" (¥ —¥y)? DFT=n-1 MST= 3>

M&OW'@%@#
WC@HWQW e ﬂaﬁd””"
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Assessing the Accuracy of the Model

Noting that:

RSS = S,, — f1Szy,

N =
=TSS =SSM

we can define the R? statistic as:

2 A
R? = Say ) Say _ 1Sz _ SSM _ . SSE
/Sez - Syy S,  SST ~ SST SST

e R?isinterpreted as the proportion of total variation in the y;’s explained by
the variable x in a linear regression model.

e R?is the square of the sample correlation between Y and X in simple linear
regression.

» Hence takes a value between 0 and 1.

Proof: See Lab questions




-y

Summary of R* from the six examples

Below is a table of the R? for all of the six examples:

1 2 3 4 5 6
R* 076 0.68 0.02 0.03 0.99 0.89

The R? for 1, 2, and 3, 4 are more or less equivalent.
= As expected since we only changed n.
e Example 5 has the highestg& R? despite having an insignificant f,.
e Example 6 has a higher R? than 1-4, despite it clearly not being linear.

e Example 6 does not satisfy either the weak or strong assumptions, the results
cannot be trusted. (More on this later)

* There is more to modelling than looking at numbers!

36 /100
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Lecture Outline

* Simple Linear Regression

* Multiple Linear Regression

* Categorical predictors

* R Demo

e ANOVA

e Linear model selection

* Potential problems with Linear Regression
* So what's next

* Appendices
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Overview

Extend the simple linear regression model to accommodate multiple
predictors

Y=00+06X1+ 06X+ -+ 5, Xy, +¢

m Recall Y = (y17 ...,yn)T and we denote Xg = ($1j, L2jyeeey $n])—|—

= Data is now paired as (Z/lﬂa L1159 L1y ooy ZIle), ooy (yn‘, Lply eeey wnp).

Bj: the average effect on y,g of a one unit increase in ;;, holding all z;;, k # j
variables fixed.

Instead of fitting a line, we are now fitting a (hyper-)plane

e Important note: If we denote x; to be the i'th row of X, you should observe
that the response Y is still linear with respect to the predictors since

Yi = X0+ €
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Advertising Example

sales =~ By + B1 X TV + B9 X radio

— ’Radio

-y
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Linear Algebra and Matrix Approach

The model can be re-written as:

['W Y =XB+e¢

with g = (@ Bi,...,B3,)", Y and € is defined the same as simple linear regression.
The matrix X is given by

I z11 o2 T1p po
1 x91 2o Z2p Pﬁ
X = , :
o=
1z T ... Ty W

Note that the matrix X is of size (n,p + 1) and 8 is a p + 1 column vector.

e Verity all the dimensions make sense, expand it! Also verify simple linear
regression can be recovered from this notation.

e Take careful note of the notation in different contexts. Here X is a matrix,
while in simple linear regression it was a column vector. Depending on the
1 J context it should be obvious which is which.
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Assumptions of the Model

Weak Assumptions:

The error terms ¢; satisty the following;:

Ele|X]= 0, fori=1,2,...,n;
Var(e|X) = o2, fori=1,2,...,n;
Cov(e;,€;|X) = 0, foralli#j.

In words, the errors have zero means, common variance, and are uncorrelated.
In matrix form, we have:

E [e] = 0; Cov (€) = o°I,,

where I, is the n x n identity matrix.
Strong Assumptions: €;| X (0, 02).

In words, errors are i.i.d. normal random variables with zero mean and
constant variance.

40/100
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Least Squares Estimates (LSE)

e Same least squares approach as in Simple Linear Regression

e Minimise the residuals sum of squared (RSS)

n n

RSS = Z (yz — ﬁz)2 — Z (yz _ BO — leil — .. — Bpwip)2
1=1 1=1

— (Y -XB) (Y -XB) =) _¢&.

1=1

o If (X'X) ! exists, it can be shown that the solution is given by:

B=(x"X) XY
e The corresponding vector of fitted (or predicted) values is

V- X4 Hat mativ = XXX
Hat malriy FLJE o hit o Y
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Least Squares Estimates (LSE) - Properties

Under the weak assumptions we have unbiased estimators:

A

1. The least squares estimators are unbiased: E[5] = .

2. The variance-covariance matrix of the least squares estimators is: Var(3) =
o2 x (XTX)

3. An unbiased estimator of o2 is:

AN\ T N
2o 1 (Y—Y) (Y-Y): RSS
n—p—1 n—p-—1

p + 1 is the total number of parameters estimated.

4. Under the strong assumptions, each Bk is normally distributed. See details in
slide.

42 /100
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Lecture Outline

* Simple Linear Regression

* Multiple Linear Regression

e Categorical predictors

* R Demo

e ANOVA

e Linear model selection

* Potential problems with Linear Regression
* So what's next
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Qualitative predictors

Suppose a predictor is qualitative (e.g., 2 different levels) - how would you
model/code this in a regression? What if there are more than 2 levels?

e Consider for example the problem of predicting salary for a potential job
applicant:
= A quantitative variable could be years of relevant work experience.

= A two-category variable could be is the applicant currently an employee of
this company? (T/F)

* A multiple-category variable could be highest level of education? (HS
diploma, Bachelors, Masters, PhD) How do we incorporate this qualitative
data into our modelling?
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Integer encoding

One solution - assign the values of the categories to a number.

e Eg, (HS,B,M,P)=(1,2,3,4).

Problem? The numbers you use specity a relationship between the categories.
For example, we are saying a Bachelors degree is above a HS diploma (in
particular, is worth 2x more). So 8.4, (B) = 2 X Bequ(HS).

e (HS,B,M,P) = (4,7,2,3).

Now this gives an interpretation that a HS diploma is worth more than a PhD
but less than a Bachelors?

e What if the categories are completely unrelated like colours (green, blue, red,
yellow)?
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One-hot encoding

Another solution is to use a technique called one-hot encoding. Create a set of
binary variables that take 0 or 1 depending if the variable belongs to a certain
category.

e Use one-hot encoding when the categories have no ordinal relationship
between them.

e E.g., if if we have (red, green, green, blue) the dummy encoded matrix could

be:
R C B
R 1 0 O
G| [0 1 0
Gl |0 1 o0}’
B 0 0 1

where the first column represents red, second green and third blue.
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Dummy encoding

Technically, we cannot use one-hot encoding in linear regression, but instead
use a technique called dummy encoding.

We pick a base case, i.e. set the entry of the row of the matrix to be 0 if it’s the
base case.

Using the same example as before and we, se‘h’Red’ to be the base case we have:

R\ q0_o}

1 0
0 Y
1

G
G| |1
B 0
where now the first column is green, second is blue. If both columns are 0, then
it represents red (implicitly).

e Need this to prevent a singularity in (X ' X), since the first column of X are
1’s (recall your definition of linear independence!)

* Bonus question: What if we remove the intercept column in our design matrix
X7? Do we still need a base case? A]O
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The matrix approach

-y

TV  radio sales
Y =X(0+¢€
230.1 378 221
445 393 104 i T T2 Z1p 8, z
L1  T22 L2y Y2
172 459 93 X = : B . LY = :
1515 413 185 1 om o Ty | By ”
180.8 10.8 129
library(tidyverse) 0
site <- url("https://www.statlearning.com/s/Advertising.csv")
8.7 48.9 7.2 dffadv <- r‘ead_;s)v(site, shov.u_col_tyﬁes = FALSE) :
575 328 118 ;( : gzjzcljv??trzzigsﬂ]/ + radio, data = df _adv);
120.2 196 13.2 ——— A 1 head(y) .
86 21 48 (Intercept) TV radio # A tibble: 6 x 1
1 1 230.1 37.8 sales
1998 26 106 ; 1 172 5.9 1 22
4 1 151.5 41.3 2 10.4
66.1 5.8 8.6 5 1 180.8 10.8 3 9.3
6 1 8.7 48.9 4 18.5
5 12.9
6 7.2
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Brief refresher

Fitting: Minimise the residuals sum of squares

n n

RSS = 3y — 30)2 = 3 (0 — Bo — Brzas — ... — Byaiy)

= (; ~XB8)' (Y —_XB)

2

If (XTX) ! exists, it can be shown that the solution is given by:

A

B=(x"X) XY
Predicting: The predicted values are given by

Y = XA.

48 /100
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R’s Im and predict ‘
(oo reg etson B=(Xx"Xx)XxTY i 6 J

|

‘ model <- 1lm(sales ~ TV + radio, data = df_adv)Ej | X <- model.matrix(~ TV + radio, data = df_adv)tj

coef(model) y <- df_advfsales
beta <- solve(t(X) %*% X) %*% t(X) %%y
(Intercept) TV radio beta T K vl
2.92109991 0.04575482 0.18799423 [’[ J )( >[
[,1]
(Intercept) 2.92109991
TV 0.04575482
radio 0.18799423

budgets <- data.frame(TV = c(100, 200, 300), radic
predict(model, newdata = budgets)

X_new <- model.matrix(~ TV + radio, data = budEEt:
X_new %*% beta

1 2 3 [,1]
11.25647 17.71189 24.16731 1 11.25647

<\_”> 2 17.71189
e

3 24.16731
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Dummy encoding

50/100

Design matrices are normally an “Excel’-style table of covariates/predictors plus

a column of ones.

If categorical variables are present, they are added as dummy variables:

fake <- tibble(
speed = c(100, 80, 60, 60, 120, 40),
risk = c("Low", "Medium", "High",
"Medium", "Low", "Low")

)
fake

B

# A tibble: 6 x 2
speed risk
<dbl> <chr>

1 100 Low
2 80 Medium
- 60 High
4 Go—Medium
5 120 Low
6 40 Low

{ model.matrix(~ speed + risk, data = fake) )
(Intercept) speed riskLow riskMedium

1 1 100 1 0

2 1 80 1

3 1 60 @

4 1 60 %]

5 1 120 1 0

6 1 40 1 0

attr(,"assign")

[1] 0122

attr(,"contrasts")
attr(,"contrasts")$risk
[1] "contr.treatment”

UNSW

SYDNEY
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Dummy encoding & collinearity
Why do dummy variables drop the last level?

X_dummy = model.matrix(~ risk, data = fake) ) X_oh <- cbind(X_dummy, riskHigh = (fake$risk =£7"}
as.data.frame(X_dummy) as.data.frame(X_oh)

(Intercept) riskLow riskMedium (Intercept) riskLow riskMedium riskHigh
1 1 1 (%] 1 1 1 0 9]
2 1 (%] 1 2 1 (%] 1 9]
3 1 %] 0 3 1 (%] 0 1
4 1 %] 1 4 1 (%] 1 9]
5 1 1 (%] 5 1 1 (%] 7]
6 1 1 0 6 1 1 0 (%]
solve(t(X_dummy) %*% X_dummy) 0 ’ ‘ solve(t(X_oh) %*% X_oh) 0
(Intercept) riskLow riskMedium Error in solve.default(t(X_oh) %*% X _oh): system is
(Intercept) 1 -1.000000 -1.0 computationally singular: reciprocal condition number =
riskLow -1 1.333333 1.0 6.93889e-18
riskMedium -1 1.000000 1.5
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Test the Relationship Between the Response and
Predictors

The below is a test to if the multiple linear regression model is significantly
better than just predicting the mean Y.

H():ﬂ1:°'°zﬂp=0
H, : at least one f3; is non-zero

(TSS—RSS)/p

* F-statistic = g Tnp-1) ™~ Fon—p—1

* Verify the F-test gives the same conclusion as the t-test on 5; # 0 for simple
) . _
linear regression!

e Question: Given the individual p-values for each variable, why do we need to
look at the overall F-statistics?

= Because a model with all insignificant p-values may jointly still be able to
explain a significant proportion of the variance.

= Conversely, a model with significant predictors may still fail to explain a
significant proportion of the variance.
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Analysis of variance (ANOVA)

The sums of squares are interpreted as follows:

e TSSis the total variability in the absence of knowledge of the variables
)(1,... ,)Kb;

e RSSis the total variability remaining after introducing the effect of Xy, ..., X,;
e SSM is the total variability “explained” because of knowledge of X;, ..., X,.

54 /100




ANOVA

This partitioning of the variability is used in ANOVA tables:

55/100

Source Sum of squares DoF Mean square F p-value
Regression SSM =" (4 — y)* DFM = p MSM = 5% Msg 1 — Formpre(F)
Error SSE = >"7 (vi — 4:)? DFE=n-p-1 MSE = {32 -

Total SST = 3" (v — §)* DFT =n—1 MST = 557

-y

UNSW

SYDNEY
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Model Fit and Predictions

e Measure model fit (similar to the simple linear regression)

» Residual standard error (RSE)

2 _ 1 _ RSS
" R"=1— 753

e Uncertainties associated with the prediction

n BO, Bl, cee Bp are estimates. Still have the t-tests to test individual
significance.

" Jinear model is an approximation

» random error €

56 /100
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Advertising Example (continued

Linear regression fit using TV and Radio:

Z)
~Z %
’{//’;,//’ 25t

74 l// (t" 7

AT

What do you observe?

57 /100
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Other Considerations in the Regression Model

e Qualitative predictors

= two or more levels, with no logical ordering

= create binary (0/1) dummy variables

= Need (#levels - 1) dummy variables to fully encode
 Interaction terms (X;X;) (removing the additive assumption)

e Quadratic terms (X?) (non-linear relationship)

58 /100
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Example 7 - Data plot

The below data was generated by Y =1 — 0.7 x X; + X3 + € where X, X, ~
U[0,10] and e ~ N(0, 1) with n = 30.
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Example 7 - Model summary

The below data was generated by Y =1 — 0.7 x X; + X5 + € where X, Xy ~
U|0,10] and € ~ N(0,1) with n = 30.

Call:
Im(formula = Y ~ X1 + X2)

Residuals: - C)P éai
Min 1Q Median 3Q Max —
-1.6923 -0.4883 -0.1590 0.5366 1.9996

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.22651 0.45843 2.675 ©0.0125 *

X1 -0.71826 0.05562 -12.913 5556e—13 Ak

X2 1.01285 0.05589 18.121 < 2e-16 ***

. D

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8625 on 27 degrees of freedom
Multiple R-squared: ©.9555, Adjusted R-squared: ©.9522
F-statistic: 290.1 on 2 and 27 DF, p-value: < 2.2e-16

—

60 /100
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Example 8 - Data plot

The below data was generated by Y =1 — 0.7 x X; + X3 + € where X, X, ~
U[0,10] and € ~ N(0, 100) with n = 30.




Example 8 - Model summary

The below data was generated by Y =1 — 0.7 x X; + X5 + € where X, Xy ~
U|0,10] and € ~ N(0,100) with n = 30.

Call:
Im(formula = Y ~ X1 + X2)

Residuals:
Min 1Q Median 3Q Max
-16.923 -4.883 -1.591 5.366 19.996

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 3.2651 4.5843 0.712 0.4824
X1 -0.8826 0.5562 -1.587 0.1242
X2 1.1285 0.5589 2.019 0.0535 .
Signif. codes: @ '"***' @.001 '**' 9.01 '*' ©0.05 '.' 0.1 " '

Residual standard error: 8.625 on 27 degrees of freedom

Multiple R-squared: ©0.2231, Adjusted R-sg ed;~ 0.1656
F-statistic: 3.877 on 2 and 27 DF, p-value{ 0.03309 égéf-_____———”///ﬂ
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The credit dataset

20 40 60 80 100 5 10 15 20 2000 8000 14000
L L L L L L I L1

Balance

Age

20 40 60 80 100

Cards

Education

Income

T
50 100 150

1000

600

Rating

200

L
0 500 1500 2 6 8 50 100 150 200 600 1000

Qualitative covariates: own, student, status, region

-y
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Linear Model selection

e Various approaches - we will focus on
= Subset selection
» Indirect methods
= Shrinkage (also called Regularization) (Later in the course)

» Dimension Reduction (Later in the course)

64 /100
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Subset selection

e The classic approach is subset selection
e Standard approaches include

= Best subset

» Forward stepwise

» Backwards stepwise

= Hybrid stepwise

P prodis,

65/100
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Best subset selection

Consider a linear model with n observations and p potential predictors:

DY =By + fiXy + BoXo 4 -+ + B X,

Algorithm:

e Consider the models with 0 predictors, and call this M,. This is the null
model y; \= fot /%X\\

Consider all models with 1 predictor, pick the best fit, and call this M,

onsider the model with p predictor, and call this M,,. This is the full model
* Pick the best fit of My, M;,..., M,

);’3' L predelors V= PtBiXy T B X \#b

-y
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Best subset selection - behaviour

e Considers all possible models, given the predictors

e Optimal model My, sets p — k parameters to 0, the rest are found using the
normal fitting technique

 Picks the best of all possible models, given selection criteria

e Very computationally expensive. Calculates:

p
Z (I]z) = 2P models

k=0

"
1
%ﬁ
G

67 /100
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Stepwise Example: Forward stepwise selection _
Algorithm: SW e v
& ' / BD bed

Start with the null model M,

\/- :
o= Bt Xx\%\')
Extend M; with one of the p — 1 remaining predictors. Pick the best, and call

this M, \ y,__ Ea,f ﬁg_)cz_—r % X) \');2

e Consider the p models with 1 predictor, pick the best, and call this M;

End with the full model M,
Pick the best fit of My, My,..., M,

[
¥= X

YYYYYY


iPad

iPad

iPad

iPad

iPad

iPad

iPad


-y

69 /100

Stepwise subset selection - behaviour

Considers a much smaller set of models, but the models are generally good
fits

Far less computationally expensive. Considers only: ‘PZ

~1
(p—k)=1+
0

3

1
plp+1) models

e
I

Like best-subset, sets excluded predictor’s parameters to 0
Backward and forward selection g_ive similar, but possibly different models
Assumes each “best model” with n predictors is a proper subset of the one

. . ———
with sizen + 1

= In other words, it only looks one step ahead at a time

Hybrid approaches exist, adding some variables, but also removing variables
at each step
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Example: Best subset and forward selection on
Credit data

# Variables Best subset Forward stepwise

1 rating ‘ rating |

2  rating, income rating, income
. C—

3 my}g, income, student ,/\ rating, income, student {

4( carddy, income, student@ rating, income, student, /lzmzt

70/100
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How to determine the “best” model  ]S5= RSS+ Ssm

4 /
e Need a metric to compare different models g ( \/é— '77)
R can give misleading results as models with more parameters always have a
higher R? on the training set: ﬁl - |- R «

e
«©
o
©
S}

M
A
~

Residual Sum of Squares

3 3
RSS and R? for each possible model containing a subset of the ten predictors in the Credit data set. dlss C j
e Want low test error: 6{@“ taie (& | \
» Indirect: estimate test error by adjusting the training error metric due to 5. - -
e e MUl

bias from overfitting

= Direct: e.g., cross-validation, validation set - To be covered later
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Indirect methods 0[__ I Mdf?ws

1. C}, with d predictors:

1
- (RSS + 2d5?)
M | S@m,e
e Unbiased estimate of test MSE if 62 is an unbiased estimate of o2

S 2. Akaike information criteria (AIC) with d predictors:

1
| 9 E(RSS + 2d6?)

* Proportional to C), for least squares, so gives the same results

= UNSW

YYYYYY
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Indirect methods cont.

3. Bayesian information criteria (BIC) with d predictors

;(RSSH(%(n)d&z) /L‘ﬁ‘@” M o Pf%

%@ n— /.

o ] > 2 for n.> 7, so this is a much heavier penalt
og(n) 27 vier penalty

4. Adjusted R? with d predictors

RSS/(n—d—1)
~ TSS/(n—1)

1

* Decreases in RSS from adding parameters are offset by the increase in
1/(n—d—1)

e Popular and intuitive, but theoretical backing not as strong as the other

measures [
(w ke /%J;'@ .
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How to determine the “best” model - Credit
dataset

C
15000 20000 25000 30000

10000

[ ]
| |
2 4 10

Number of Predictors

£)..

BIC

20000

30000

25000

15000

10000

| |
8 10

.637 .....

Number of Predictors

Adjusted R?

0.86 0.88 090 092 094 0.96

| | | | |
2 4 6 8 10

Number of Predictors
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Lecture Outline
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Potential Problems/Concerns BX
To apply linear regression properly: y Y= ;go‘f'“ﬁ X, T T Jy/;

e The relationship between the predictors and response are linear and additive
(i.e. effects of the covariates must be additive);

e Homoskedastic (constant) variance;

e Errors must be independent of the explanatory variables with mean zero
(weak assumptions);

e Errors must be Normally distributed, and hence, symmetric (only in case of
testing, i.e., strong assumptions).
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Recall Example 6 - The problems

Recall the below data was generated by Y = 1+ 0.2 X X? + ¢ where X ~
U[0,10] and € ~ N(0,0.01) with n = 30.

Mean of the residuals: -1.431303e-16

Residual Plot (o = 0.1, n = 500)

A
R RN

Residuals

X values

e Residuals do not have We.

e Residuals indicate a linear model is not appropriate.

-y
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Potential Problems/Concerns

1. Non-linearity of the response-predictor relationships
2. Correlation of error terms

3. Non-constant variance of error terms

4. Outliers

5. High-leverage points

6. Collinearity

7. Confounding effect (correlation does not imply causality!)

771100
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1. Non-linearities

Example: residuals vs fitted for MPG vs Horsepower: HUW" /20'7_ P‘“IO& [MAQ>

/\ Residual Plot for Linear Fit Residual Plot for Quadratic Fit /

& —\ /
F\W o] % 24
A 334
o _|
o 1 ~
“ ™
_ 2.« MPl
A— 0 —
% (‘- ) MPG 2 o ©
3 3
g2 o 2 °
o o
0 _|
To) |
.
o
o —
e ] |
I
Te]
1o} - - 155
= |
|
T T T T T 1 T T T T 1
5 10 15 20 25 30 15 20 25 30 35
Fitted values Fitted values

LHS is a linear model. RHS is a quadratic model.

Quadratic model removes much of the pattern - we look at these in more detail
later.

-y
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2. Correlations in the Error terms

e The assumption in the regression model is that the error terms are
uncorrelated with each other.

e If they are not uncorrelated the standard errors will be incorrect.

p=0.0
® - o
o
~ ° o ° o ©
I o W o Voo P00 € 000 | \ oo
® / o ° %, ° ° /00\ o ) ZDDO/ oo o ! o — -
3 © o "a'\/'\/\‘c’gvc"/"naa "o '2’/9\-0’/'\'%’%"'09"5' '/91\'5- -4 ,_\7;_\ch_\_/_\_9 v S - — I
é N 0 c/\c:/ \00 \/\Olooco co e o/ \"’/ * \ca \c o/D \o° ’ ° i © et o °/L\c L = l /
o °
o
T T T T T T
0 20 40 60 80 100
p=0.5
o
_ / Oa./\co ° /\ /co\a \l \ /\ /
R 7/\#\?\ ________ ‘__,_a' ________ LN o S J xgj\.f\.a...\.. ........
\s ° o D-°c=' v/ ‘c/\lo'\ ;
" \/ "
o \
<
1 T T
0 20 40 60 80 100
p=0.9
2 o
O.\
0 / \ O 400\ %/
5 © ) oo Vo o \ \
:5 ""‘coo'oi __________ \_/__\D’___’o___’____’_/k_’__fg\’7r__’_a_’____’___ TTToDTog T T~ 'D{/'__’
sl o) > o, | o 7 o’ Oeo
\ o o 000
0 og
T o
T T
0 20 40 60 80 100

Observation
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3. Non-constant error terms
The following are two regression outputs vs Y (LHS) and InY (RHS)

V=93 103(7 )=KB

Response Y Response log(Y

A ses e | <)y 0.2 K0
///////////—____——_~§§\\\\\“\\\\

| )= bylfoaR

998

848>

o _]
m —
605

[ R R E S Y Loj(O-l)CQ>

10 15 20 25 30 2.4 2.6 2.8 3.0 3.2 3.4

Fitted values Fitted values - F OS(O Z) T 2 @ >

In this example log transformation removed much of the heteroscedasticity.

Residuals
Residuals

/

4 -02 00 02 04

|
-0.6
|

-0.8
I
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4. Outliers

0>
.
L
8!
7
O

)

200 o 200
© < —
s
< ™ 3 Y
%) (%]
1 [}
[N =}
>~ % © o0 O E I
c 0o = ©o o
o (9 o @) CS%) o o
o o ST Q00 ... E &S OO@OQC%
o @O(I) o OO o & o o 60 507 G
- ©o o o8  o0° a
! O O O o SENe!
T o e ° ©
T T T T T T T T T T T T T T T
-2 -1 0 1 2 -2 0 2 4 6 -2 0 2 4 6

X Fitted Values Fitted Values
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5. High-leverage points

The following compares the fitted line with (RED) and without (BLUE)
observation 41 fitted.

w - 020
o Y 7
©
3 o o 410
7]
i
S~ 5 N
o)
N
EY—
o)
°
Eo ............................................
wn
T %)
O

0.00 0.05 0.10 0.15 0.20 0.25

Leverage
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High-leverage points

e Have unusual predictor values, causing the regression line to be dragged
towards them

* A few points can significantly affect the estimated regression line

Compute the leverage using the hat matrix:

H=XX'xX)"'x"' \//\ — H'Y

Note that

n n
gi = Y hijy; = hayi + Y hijy;
=1 i

so each prediction is a linear function of all observations, and h;; = [H];; is the
weight of observation ¢ on its own prediction

e If h;i > 2(p + 1)/n, the predictor can be considered as having a high leverage
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High-leverage points (Example 1)

The below data was generated by Y =1 — 0.5 x X + ¢ where X ~ U|0, 10] and
e ~ N(0,1) with n = 30. We have added one high leverage point (made a red "+’

on the scatterplot).

e This point (y = =7,z = 20) has a leverage value of 0.47 >> 4/30, depsite it not

being an outlier. o=20

ver =9 wilhy 264
Scatter Plot with Multiple Regression Lines (sigma =1, n = 31)
N ° ° — = True Line
— Predicted without leverage b
°® ° ° .

Predicted with leverage

Y values

medly/
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6. Collinearity

Two or more predictor values are closely related to each other (linearly
dependent)

If a column is linearly dependent on another, the matrix (X ' X) is singular,
hence non-invertible.

Reduces the accuracy of the regression by increasing the set of plausible
coefficient values

In effect, the causes SE of the beta coefficients to grow.

Correlation can indicate one-to-one (linear) collinearity

A

@:(%WYXV
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Collinearity makes optimisation harder

/8 Age

T
0.16 0.17 0.18 0.19 -0.1 0.0

Blimit V/m\ &/ge 5 — Yy K

Contour plots of the values as a function of the predictors. Credit dataset
used.

Left: balance regressed onto age and 1imit. Predictors have low collinearity

Right: balance regressed onto rating and limit. Predictors have high
collinearity

Black: coefficient estimate
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Multicollinearity N SN+ o)+ + Xp ¥n

e Use variance inflation factor d@ﬂ UID L 0@9&@ )
1

A

VIF(8;) =

1- Rgfle—j

. R%Cj‘ x_; is the R? from X being regressed onto all other predictors

e Minimum 1, higher is worse (> 5 or 10 is considered high)

e Recall R? measures the strength of the linear relationship between the

response variable (X;) against the explanatory variables (X _;).
s

Predetrs  bse  X:
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Multicollinearity example - Plot

The below data was generated by Y =1 — 0.7 x X; + X3 + € where X; ~
U[0,10], X, = 2X; and € ~ N(0,1) with n = 30.

GOk
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Multicollinearity example - Summary and VIF

The below data was generated by Y =1 — 0.7 x X; + X5 + € where X; ~
U[0,10], X, = 2X; + ¢, where e ~ N(0,107°) is a small change (to make this
work) and € ~ N(0,1) with n = 30.

Call:
Im(formula = Y ~ X1 + X2)

Residuals:
Min 1Q Median 3Q Max
-2.32126 -0.46578 0.02207 ©0.54006 1.89817

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.192e-01 3.600e-01 1.442 0.1607

X1 5.958e+04 3.268e+04 1.823 ©0.0793 .
X2 -2.979e+04 1.634e+04 -1.823 0.0793 .
Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8538 on 27 degrees of freedom
Multiple R-squared: ©0.9614, Adjusted R-squared: ©0.9585
F-statistic: 335.9 on 2 and 27 DF, p-value: < 2.2e-16

VIF for X1: 360619740351

VIF for X2: 360619740351

» High SE on the coefficient estimates making them unreliable.
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7. Confounding effects

e But what about confounding variables? Be careful, correlation does not imply
causality!!

e (' is a confounder (confounding variable) of the relation between X and Y if:
» C influences X and C influences Y,

= but X does not influence Y (directly).

1. Check this website on spurious correlations.
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Confounding effects

e The predictor variable X would have an indirect influence on the dependent
variable Y.

= Example: Age = Experience = Aptitude for mathematics. If experience
can not be measured, age can be a proxy for experience.

e The predictor variable X would have no direct influence on dependent
variable Y.

= Example: Being old doesn’t necessarily mean you are good at maths!

e Hence, a predictor variable works as a predictor, but action taken on the
predictor itself will have no effect.
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Confounding effects

How to correctly use/don’t use confounding variables?

 If a confounding variable is observable: add the confounding variable.

 If a confounding variable is unobservable: be careful with intergretg;j on!
,?é
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Lecture Outline

* Simple Linear Regression

* Multiple Linear Regression

* Categorical predictors

* R Demo

e ANOVA

e Linear model selection

* Potential problems with Linear Regression
e So what’s next

* Appendices
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Generalisations of the Linear Model

In much of the rest of this course, we discuss methods that expand the scope of
linear models and how they are fit:

* Classification problems: logistic regression LF

* Non-normality: Generalised Linear Model S

e Non-linearity: splines and generalized additive models; KNN, tree-based
methods

* Regqularised fitting: Ridge regression and lasso

* Non-parametric: Tree-based methods, bagging, random forests and boosting,
KNN (these also capture non-linearities)
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Lecture Outline

* Simple Linear Regression

* Multiple Linear Regression

* Categorical predictors

* R Demo

e ANOVA

e Linear model selection

* Potential problems with Linear Regression
* So what's next

e Appendices
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Appendix: Sum of squares
Recall from ACTL2131/ACTL5101, we have the following sum of squares:

& S
S:B.:B: z__2 — s = =

zz:;(m ) Sp =

- —\2 2 Syy
Syy:E:(yz—y) :Sy:n—l

Sz
Say = Z(wl —Z)(Yi —Y) = Soy= L,

1=1

2 o2 :
Here s;, s; (and s;,) denote sample (co-)variance.
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Appendix: CI for £; and S,

Rationale for 8;: Recall that 3 is unbiased and Var(Bl) = 02/8,,. However o? is
usually unknown, and estimated by s? so, under the strong assumptions, we

b—pB1 _ B [
$/+/ Sz a/m n—2 2

Xn 2/

have:

.. 2 n
as €; ~ N(0,0) then _(n—022_)-s = Lzl 60 LETEN Xn-2-

Note: Why do we lose two degrees of freedom? Because we estimated two
parameters!

Similar rationale for S.
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Appendix: Statistical Properties of the Least
Squares Estimates

4.

Under the strong assumptions of normality each component 3j, is normally
distributed with mean and variance

E[Br] = Bk, Var(B) = 0? - e,
and covariance between i, and f;:

COV(Bk,Bz) =o?. Ckl,

where ¢y, is the (k 4+ 1)™ diagonal entry of the matrix C = (XTX) o

The standard error of Bk is estimated using se(Bk) = $./Cik-
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Simple linear regression: Assessing the Accuracy
of the Predictions - Mean Response

Suppose = = ¢ is a specified value of the out of sample regressor variable and we
want to predict the corresponding Y value associated with it. The mean of Y is:

ElY | zo] = E[Bo + fiz | £ = x]
= Bo + Bizo-

Our (unbiased) estimator for this mean (also the fitted value of yo) is:
do = Bo + Pro.

The variance of this estimator is:

Var(go) = (1 i m0)2> o = SE({)’

n Sz

Proof: See Lab questions.
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Simple linear regression: Assessing the Accuracy
of the Predictions - Mean Response

Using the strong assumptions, the 100 (1 — a) % confidence interval for 5y +
Bizo (mean of Y) is:

. 1 (T — )
(Bo + Biwo) £t1-a/2n2 X ${/ — + )

~ ~~ 7 n ‘S&x
Yo N —~- o
SE(90)
as we have and
Jo ~ N (Bo + B10, SE(%0)?) 9o — (Bo + B1o) 3
— ~ t(n — 2).
SE(@/O)

Similar rationale to slide.
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Simple linear regression: Assessing the Accuracy
of the Predictions - Individual response

A prediction interval is a confidence interval for the actual value of a Y; (not for
its mean By + Si1x;). We base our prediction of Y; (given X = z;) on:

§; = Bo + i
The error in our prediction is:
Yi—g;=po+Bizi +e -9, =EY|X =z;] - 9; + €.
with
ElY;—9,/X =2,X =x;] =0, and

1 T — x; 2
Var(Y; — ;X =2, X = 2;) =0>(1+ — + (”’Sw) ).
n rr

Proof: See Lab questions.
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Simple linear regression: Assessing the Accuracy
of the Predictions - Individual response

A 100(1 — o) % prediction interval for Y;, the value of Y at X = z;, is given by:

5 A 1 T — I 2
/BO + ﬁlxi + tl—a/2,n—2 "S- \/]— + -+ ( ) )
N—— n S:ca:
Yi
as
1 (f — .CCZ')2

(Vi §,|X =2, X = x;) NN(0,02(1+ — 4 2 0)), and
n L

~ tp 2.
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