
Linear Regression
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications
Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with

permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
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Linear Regression
A classical and easily applicable approach for supervised learning

Useful tool for predicting a quantitative response
Model is easy to interpret

Many more advanced techniques can be seen as an extension of linear
regression

2 / 100



Lecture Outline

Simple Linear Regression

Multiple Linear Regression

Categorical predictors

R Demo

ANOVA

Linear model selection

Potential problems with Linear Regression

So what’s next

Appendices

2 / 100



Overview
Suppose we have pairs of data  and we want to
predict values of  based on ?

We could do a linear prediction: .

We could do a quadratic prediction: .

We could do a general non-linear function prediction: .

All of these methods are examples of models we can specify. Let’s focus on the
linear prediction. Some questions:

How do we choose  and ? There are infinite possibilities?

How do we know whether the line is a ‘good’ fit? And what do we mean by
‘good’?

(y ​,x ​), (y ​,x ​), ..., (y ​,x ​)1 1 2 2 n n

y ​i x ​i

y ​ =i mx ​ +i b

y ​ =i ax ​ +i
2 bx ​ +i c

y ​ =i f(x ​)i

m b
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Overview
Simple linear regression is a linear prediction.

Predict a quantitative response  based on a single predictor
variable 

Assume the ‘true’ relationship between  and  is linear:

where  is an error term with certain assumptions on it for
identifiability reasons.

Y = (y ​, ..., y ​)1 n
⊤

X = (x ​, ...,x ​)1 n
⊤

X Y

Y = β ​ +0 β ​X +1 ϵ,

ϵ = (ϵ ​, ..., ϵ ​)1 n
⊤
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Advertising Example
sales ≈ β ​ +0 β ​ ×1 TV
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Assumptions on the errors
Weak assumptions

for ; for all .

In other words, errors have zero mean, common variance and are
conditionally uncorrelated. Parameters estimation: Least Squares
Strong assumptions

for . In other words, errors are i.i.d. Normal random variables
with zero mean and constant variance. Parameters estimation: Maximum
Likelihood or Least Squares

E(ϵ ​∣X) =i 0, V(ϵ ​∣X) =i σ2

and Cov(ϵ ​, ϵ ​∣X) =i j 0

i = 1, 2, 3, ...,n i = j

ϵ ​
∣Xi ∼i.i.d.

N (0,σ )2

i = 1, 2, 3, ...,n
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Model estimation
We have paired data .

We assume there is a ‘true’ relationship between the  and  described as

And we assume  satisfies either the weak or strong assumptions.

How do we obtain estimates  and ? If we have these estimates, we can
make predictions on the mean:

where we used the fact that  and we estimate  by .

(y ​,x ​), ..., (y ​,x ​)1 1 n n

y ​i x ​i

Y = β ​ +0 β ​X +1 ϵ,

ϵ

​ ​β̂0 ​ ​β̂1

​ ​

​ ​ŷi = E[y ​∣X] = E[β ​ + β ​x ​ + ϵ ​∣X]i 0 1 i i

= ​ ​ + ​ ​x ​β̂0 β̂1 i

E[ϵ ​∣X] =i 0 β ​j ​β̂j
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Least Squares Estimates (LSE)
Most common approach to estimating  and 

Minimise the residual sum of squares (RSS)

The least square coefficient estimates are

where  and . See  on ,  and sample
(co-)variances. Proof: See Lab questions.

​ ​β̂0 ​ ​β̂1

RSS = ​(y ​ −
i=1

∑
n

i ​ ​) =ŷi
2

​(y ​ −
i=1

∑
n

i ​ ​ −β̂0 ​ ​x ​)β̂1 i
2

​ ​

​ ​β̂1

​ ​β̂0

= ​ = ​

​(x ​ − ​)∑i=1
n

i x̄i 2

​(x ​ − ​)(y ​ − ​ ​)∑i=1
n

i x̄i i ȳi

S ​xx

S ​xy

= ​ − ​ ​ȳ β̂1x̄

​ ≡ȳ ​ ​ y ​

n
1 ∑i=1

n
i ≡x̄ ​ ​ x ​

n
1 ∑i=1

n
i slide S ​xy S ​xx

LS Demo
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Least Squares Estimates (LSE) - Properties
Under the weak assumptions we have unbiased estimators:

An (unbiased) estimator of  is given by:

Proof: See Lab questions.

What does this mean? Using LSE obtains on average the correct values of 
and  if the assumptions are satisfied.

How confident or certain are we in these estimates?

E ​ ​∣X =[β̂0 ] β ​ and E ​ ​∣X =0 [β̂1 ] β ​.1

σ2

​ ​s2 = ​

n − 2

​ y ​ − ​ ​ + ​ ​x ​∑i=1
n ( i (β̂0 β̂1 i))

2

β ​0

β ​1
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Least Squares Estimates (LSE) - Uncertainty
Under the weak assumptions we have that the (co-)variance of the parameters
is given by:

Proof: See Lab questions. Verify yourself all three quantities goes to 0 as  gets
larger.

​ ​

Var ​ ​∣X =(β̂0 )

=

Var ​ ​∣X =(β̂1 )

Cov ​ ​, ​ ​∣X =(β̂0 β̂1 )

σ ​ + ​ = σ ​ + ​

2 (
n

1
​(x ​ − )∑i=1

n
i x 2

x2

) 2 (
n

1
S ​xx

x2

)

SE( ​)β ​0̂
2

​ = ​ = SE( ​)
​(x ​ − )∑i=1

n
i x 2

σ2

S ​xx

σ2

β ​1̂
2

− ​ = − ​

​(x ​ − )∑i=1
n

i x 2

σx 2

S ​xx

σx 2

n
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Maximum Likelihood Estimates (MLE)
In the regression model there are three parameters to estimate: , , and .

Under the strong assumptions (i.i.d Normal RV), the joint density of
 is the product of their marginals (independent by assumption)

so that the likelihood is:

Proof: Since , where , then 
. The result follows.

β ​0 β ​1 σ2

Y ​,Y ​, … ,Y ​1 2 n

​ ​

ℓ y;β ​,β ​,σ =( 0 1 ) − n log ​σ − ​ ​ y ​ − β ​ + β ​x ​ .( 2π )
2σ2

1

i=1

∑
n

( i ( 0 1 i))2

Y = β ​ +0 β ​X +1 ϵ ϵ ​i ∼i.i.d.
N (0,σ )2 y ​i ∼i.i.d.

N β ​ + β ​x ​,σ( 0 1 i
2)
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Maximum Likelihood Estimates (MLE)
Partial derivatives set to zero give the following MLEs:

and

Note that the parameters  and  have the same estimators as that produced
from Least Squares.
However, the MLE  is a biased estimator of .

In practice, we use the unbiased variant  (see ).

​

​ ​ =β̂1

​ ​ =β̂0

​ = ​ ,
​ x ​ −∑i=1

n ( i x)2

​ x ​ − y ​ − ​∑i=1
n ( i x) ( i y)

S ​xx

Sxy

​ − ​ ​ ,y β̂1x

​ =σ̂MLE
2

​ ​ y ​ − ​ ​ + ​ ​x ​ .
n

1

i=1

∑
n

( i (β̂0 β̂1 i))
2

β ​0 β ​1

σ̂2 σ2

s2 slide
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Interpretation of parameters
How do we interpret a linear regression model such as  and ?

The intercept parameter  is interpreted as the value we would predict if
.

E.g., predict  if 

The slope parameter  as the expected change in the mean-response of  for
a 1 unit increase in .

E.g., we would expect  to decrease on average by  for every 1 unit
increase in .

​ ​ =β̂0 1 ​ =β̂ −0.5

​ ​β̂0

x ​ =i 0

y ​ =i 1 x ​ =i 0

​ ​β̂1 y ​i

x ​i

y ​i −0.5
x ​i
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Example 1
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 1) n = 30

Estimates of Beta_0 and Beta_1:
 1.309629 -0.5713465 

Standard error of the estimates:
 0.346858 0.05956626 
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Example 2
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 1) n = 5000

Estimates of Beta_0 and Beta_1:
 1.028116 -0.5057372 

Standard error of the estimates:
 0.02812541 0.00487122 
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Example 3
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 100) n = 30

Estimates of Beta_0 and Beta_1:
 -2.19991 -0.4528679 

Standard error of the estimates:
 3.272989 0.5620736 
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Example 4
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 100) n = 5000

Estimates of Beta_0 and Beta_1:
 1.281162 -0.5573716 

Standard error of the estimates:
 0.2812541 0.0487122 

17 / 100

iPad



Example 5
The below data was generated by  where  and

 with .
Y = 1 − 40 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 100) n = 30

Estimates of Beta_0 and Beta_1:
 4.096286 -40.71346 

Standard error of the estimates:
 3.46858 0.5956626 

18 / 100

iPad



Assessing the models
How do we know which model estimates are reasonable?

Estimates for examples 1, 2 and 4 seem very good (low bias and low
standard error)
However we are less confident in example 3 (low bias but high standard
error)
Pretty confident in example 5 despite a similar standard error to example
3.
Can we quantify this uncertainty in terms of confidence intervals /
hypothesis testing?

Consider the next example, it has low variance but it doesn’t look ‘right’.
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Example 6
The below data was generated by  where  and

 with .
Y = 1 + 0.2 ×X +2 ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 0.01) n = 30

Estimates of Beta_0 and Beta_1:
 -2.32809 2.000979 

Variances of the estimates:
 0.01808525 0.0005420144 
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Assessing the Accuracy I
How to assess the accuracy of the coefficient estimates? In particular, consider
the following questions:

What are the confidence intervals for  and ?

How to test the null hypothesis that there is no relationship between 
and ?

How to test if the influence of the exogenous variable ( ) on the
endogenous variable ( ) is larger/smaller than some value?

For inference (e.g. confidence intervals, hypothesis tests), we need the strong assumptions!

β ​0 β ​1

X

Y

X

Y

Note
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Assessing the Accuracy of the Coefficient
Estimates - Confidence Intervals
Using the strong assumptions, a  confidence interval (CI) for ,
and resp. for , are given by:

for : for :

See .

100 1 − α %( ) β ​1

β ​0

β ​1

​ ​ ±β̂1 t ​ ⋅1−α/2,n−2 ​

( ​SÊ β ​)1̂

​​

​S ​xx

s

β ​0

​ ​ ±β̂0 t ​ ⋅1−α/2,n−2 ​

( ​)SÊ β ​0̂

​s ​​ + ​

n

1
S ​xx

x2

rationale slide
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope

When we want to test whether the exogenous variable has an influence on the
endogenous variable or if the influence is larger/smaller than some value.

For testing the hypothesis

for some constant , we use the test statistic:

which has a  distribution under the  (see ).

The construction of the hypothesis test is the same for .

H ​ :0 β ​ =1 ​ ​ vs H ​ :β1 1 β ​ =1  ​ ​β1

​ ​β1

t( ​ ​) =β̂1 ​ =
( ​)SÊ β ​1̂

​ ​ − ​ ​β̂1 β1
​

s ​( / S ​xx )
​ ​ − ​ ​β̂1 β1

t ​n−2 H ​0 rationale slide

β ​0
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope
The decision rules under various alternative hypotheses are summarized below.

Decision Making Procedures for Testing 

Alternative Reject  in favor of  if

Typically only interested in testing  vs.  , as this informs
us whether our  is significantly different from 0.

I.e., including the slope parameter is worth it!
Similar construction for  test, and again typically only test against 0.

H ​ :0 β ​ =1 ​ ​β1

H ​1 H ​0 H ​1

β ​ =1  ​ ​β1 ​t ​ ​ ​ >
∣
∣ (β̂1)

∣
∣

t ​1−α/2,n−2

β ​ >1 ​ ​β1 t ​ ​ >(β̂1) t ​1−α,n−2

β ​ <1 ​ ​β1 t ​ ​ <(β̂1) −t ​1−α,n−2

H ​ :0 β ​ =1 0 H ​ :1 β ​ =1  0
β ​1

β ​0
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Example 1 - Hypothesis testing
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 1) n = 30

Call:
lm(formula = Y ~ X)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.8580 -0.7026 -0.1236  0.5634  1.8463 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.30963    0.34686   3.776 0.000764 ***
X           -0.57135    0.05957  -9.592  2.4e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9738 on 28 degrees of freedom
Multiple R-squared:  0.7667,    Adjusted R-squared:  0.7583 
F-statistic:    92 on 1 and 28 DF,  p-value: 2.396e-10
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Example 2 - Hypothesis testing
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 1) n = 5000

Call:
lm(formula = Y ~ X)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.1179 -0.6551 -0.0087  0.6655  3.4684 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.028116   0.028125   36.55   <2e-16 ***
X           -0.505737   0.004871 -103.82   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9945 on 4998 degrees of freedom
Multiple R-squared:  0.6832,    Adjusted R-squared:  0.6831 
F-statistic: 1.078e+04 on 1 and 4998 DF,  p-value: < 2.2e-16
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Example 3 - Hypothesis testing
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 100) n = 30

Call:
lm(formula = Y ~ X)

Residuals:
    Min      1Q  Median      3Q     Max 
-20.306  -5.751  -2.109   5.522  27.049 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -2.1999     3.2730  -0.672    0.507
X            -0.4529     0.5621  -0.806    0.427

Residual standard error: 9.189 on 28 degrees of freedom
Multiple R-squared:  0.02266,   Adjusted R-squared:  -0.01225 
F-statistic: 0.6492 on 1 and 28 DF,  p-value: 0.4272
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Example 4 - Hypothesis testing
The below data was generated by  where  and

 with .
Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 100) n = 5000

Call:
lm(formula = Y ~ X)

Residuals:
    Min      1Q  Median      3Q     Max 
-31.179  -6.551  -0.087   6.655  34.684 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.28116    0.28125   4.555 5.36e-06 ***
X           -0.55737    0.04871 -11.442  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.945 on 4998 degrees of freedom
Multiple R-squared:  0.02553,   Adjusted R-squared:  0.02533 
F-statistic: 130.9 on 1 and 4998 DF,  p-value: < 2.2e-16
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Example 5 - Hypothesis testing
The below data was generated by  where  and

 with .
Y = 1 − 40 ×X + ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 100) n = 30

Call:
lm(formula = Y ~ X)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.580  -7.026  -1.236   5.634  18.463 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   4.0963     3.4686   1.181    0.248    
X           -40.7135     0.5957 -68.350   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.738 on 28 degrees of freedom
Multiple R-squared:  0.994, Adjusted R-squared:  0.9938 
F-statistic:  4672 on 1 and 28 DF,  p-value: < 2.2e-16
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Example 6 - Hypothesis testing
The below data was generated by  where  and

 with .
Y = 1 + 0.2 ×X +2 ϵ X ∼ U [0, 10]

ϵ ∼ N(0, 0.01) n = 30

Call:
lm(formula = Y ~ X)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.8282 -1.3467 -0.4217  1.1207  3.4041 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.32809    0.13448  -17.31   <2e-16 ***
X            2.00098    0.02328   85.95   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.506 on 498 degrees of freedom
Multiple R-squared:  0.9368,    Adjusted R-squared:  0.9367 
F-statistic:  7387 on 1 and 498 DF,  p-value: < 2.2e-16
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Summary of hypothesis tests
Below is the summary of the hypothesis tests for whether  are statistically
different from 0 for the six examples at the 5% level.

1 2 3 4 5 6

Y Y N Y N Y

Y Y N Y Y Y

Does that mean the models that are significant at 5% for both  and  are
equivalently ‘good’ models?

No! Example 6 is significant but clearly the underlying relationship is not
linear.

β ​j

β ​0

β ​1

β ​0 β ​1
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Assessing the accuracy of the model
We have the following so far:

Data plotting with model predictions overlayed.

Estimates of a linear model coefficients  and .
Standard errors and hypothesis tests on the coefficients.

But how do we assess whether a model is ‘good’ or ‘accurate’? Example 5 looks
arguably the best while clearly example 6 is by far the worst.

​β̂0 ​ ​β̂1
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Assessing the Accuracy of the Model
Partitioning the variability is used to assess how well the linear model explains
the trend in data:

We then obtain:

where:

TSS: total sum of squares;

RSS: sum of squares error or residual sum of squares;

SSM: sum of squares model (sometime called regression).

Proof: See Lab questions

​ =
total deviation

​y ​ − ​i y ​ +

unexplained deviation

​y − ​ ​( i ŷi) ​

explained deviation

​​ ​ − ​ .(ŷi y)

​ =

TSS

​​ y ​ − ​​

i=1

∑
n

( i y)2
​ +

RSS

​​ y ​ − ​ ​​

i=1

∑
n

( i ŷi)
2

​,

SSM

​​ ​ ​ − ​​

i=1

∑
n

(ŷi y)2
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Assessing the Accuracy of the Model
Interpret these sums of squares as follows:

TSS is the total variability in the absence of knowledge of the variable . It is
the total square deviation away from its average;

RSS is the total variability remaining after introducing the effect of ;

SSM is the total variability “explained” because of knowledge of .

This partitioning of the variability is used in ANOVA tables:

Source Sum of squares DoF Mean square F

Regression

Error

Total

X

X

X

SSM = ​( ​ −∑i=1
n

ŷi ​)y 2 DFM = 1 MSM = ​DFM
SSM

​MSE
MSM

RSS = ​(y ​ −∑i=1
n

i ​ ​)ŷi 2 DFE = n − 2 MSE = DFE
RSS

TSS = ​(y ​ −∑i=1
n

i ​)y 2 DFT = n − 1 MST = ​DFT
TSS
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Assessing the Accuracy of the Model
Noting that:

we can define the  statistic as:

 is interpreted as the proportion of total variation in the ’s explained by
the variable  in a linear regression model.

 is the square of the sample correlation between  and  in simple linear
regression.

Hence takes a value between 0 and 1.

Proof: See Lab questions

​

RSS = ​ − ​,

=TSS

​S ​yy

=SSM

​​ ​S ​β̂1 xy

R2

​

R = ​ = ​ ​ ​ = ​ = ​ = 1 − ​ .2 (
​S ​ ⋅ S ​xx yy

S ​xy )
2

β̂1
S ​yy

S ​xy

SST
​ ​S ​β̂1 xy

SST
SSM

SST
SSE

R2 yi

x

R2 Y X
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Summary of  from the six examples
Below is a table of the  for all of the six examples:

1 2 3 4 5 6

0.76 0.68 0.02 0.03 0.99 0.89

The  for 1, 2, and 3, 4 are more or less equivalent.

As expected since we only changed .

Example 5 has the highested  despite having an insignificant .

Example 6 has a higher  than 1-4, despite it clearly not being linear.

Example 6 does not satisfy either the weak or strong assumptions, the results
cannot be trusted. (More on this later)

There is more to modelling than looking at numbers!

R2

R2

R2

R2

n

R2 β ​0

R2

36 / 100

iPad



Lecture Outline

Multiple Linear Regression

Simple Linear Regression

Categorical predictors

R Demo

ANOVA

Linear model selection

Potential problems with Linear Regression

So what’s next

Appendices

36 / 100



Overview
Extend the simple linear regression model to accommodate multiple
predictors

Recall  and we denote .

Data is now paired as .

: the average effect on  of a one unit increase in , holding all 
variables fixed.

Instead of fitting a line, we are now fitting a (hyper-)plane

Important note: If we denote  to be the ’th row of , you should observe
that the response  is still linear with respect to the predictors since

Y = β ​ +0 β ​X ​ +1 1 β ​X ​ +2 2 ⋯ + β ​X ​ +p p ϵ

Y = (y ​, ..., y ​)1 n
⊤ X ​ =j (x ​,x ​, ...,x ​)1j 2j nj

⊤

(y ​,x ​,x ​, ...,x ​), ..., (y ​,x ​, ...,x ​)11 11 12 1p n1 n1 np

β ​j y ​ij x ​ij x ​, k =ik  j

x ​i i X

Y

y ​ =i x ​β +i ϵ ​i
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Advertising Example
sales ≈ β ​ +0 β ​ ×1 TV + β ​ ×2 radio
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Linear Algebra and Matrix Approach
The model can be re-written as:

with ,  and  is defined the same as simple linear regression.
The matrix  is given by

Note that the matrix  is of size  and  is a  column vector.

Verify all the dimensions make sense, expand it! Also verify simple linear
regression can be recovered from this notation.

Take careful note of the notation in different contexts. Here  is a matrix,
while in simple linear regression it was a column vector. Depending on the
context it should be obvious which is which.

Y = Xβ + ϵ

β = (β ​,β ​, ...,β ​)0 1 p
⊤ Y ϵ

X

X = ​ ​ ​ ​ ​ ​ ​

⎣

⎡ 1
1

⋮
1

x ​11

x ​21

⋮
x ​n1

x ​12

x ​22

⋮
x ​n2

…
…

⋱
…

x ​1p

x ​2p

⋮
x ​np

⎦

⎤

X (n, p + 1) β p + 1

X
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Assumptions of the Model
Weak Assumptions:

The error terms  satisfy the following:

In words, the errors have zero means, common variance, and are uncorrelated.
In matrix form, we have:

where  is the  identity matrix.

Strong Assumptions: 

In words, errors are i.i.d. normal random variables with zero mean and
constant variance.

ϵ ​i

​

​ ​ ​

E[ϵ ​∣X] =i

Var(ϵ ​∣X) =i

Cov(ϵ ​, ϵ ​∣X) =i j

0,
σ ,2

0,

 for i = 1, 2, … ,n;
 for i = 1, 2, … ,n;
 for all i = j.

​

E ϵ = ​; Cov ϵ = σ I ​,[ ] 0 ( ) 2
n

I ​n n × n

ϵ ​∣Xi ∼i.i.d N (0,σ ).2
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Least Squares Estimates (LSE)
Same least squares approach as in Simple Linear Regression

Minimise the residuals sum of squared (RSS)

If  exists, it can be shown that the solution is given by:

The corresponding vector of fitted (or predicted) values is

​ ​

RSS = ​ y ​ − ​ ​ = ​ y ​ − ​ ​ − ​ ​x ​ − … − ​ ​x ​

i=1

∑
n

( i ŷi)
2

i=1

∑
n

( i β̂0 β̂1 i1 β̂p ip)
2

= Y − Xβ Y − Xβ = ​ ​.( )⊤ ( )
i=1

∑
n

ϵ̂i
2

X X( ⊤ )
−1

​ =β̂ X X X Y .( ⊤ )
−1 ⊤

=Ŷ X ​.β̂
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Least Squares Estimates (LSE) - Properties
Under the weak assumptions we have unbiased estimators:

1. The least squares estimators are unbiased: .

2. The variance-covariance matrix of the least squares estimators is: 

3. An unbiased estimator of  is:

 is the total number of parameters estimated.

4. Under the strong assumptions, each  is normally distributed. See details in
.

E[ ​] =β̂ β

Var( ​) =β̂

σ ×2 X X( ⊤ )
−1

σ2

s =2
​ Y − Y − =

n − p − 1
1 ( Ŷ )

⊤
( Ŷ ) ​ ,

n − p − 1
RSS

p + 1

​ ​β̂k
slide
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Qualitative predictors
Suppose a predictor is qualitative (e.g., 2 different levels) - how would you
model/code this in a regression? What if there are more than 2 levels?

Consider for example the problem of predicting salary for a potential job
applicant:

A quantitative variable could be years of relevant work experience.
A two-category variable could be is the applicant currently an employee of
this company? (T/F)
A multiple-category variable could be highest level of education? (HS
diploma, Bachelors, Masters, PhD) How do we incorporate this qualitative
data into our modelling?
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Integer encoding
One solution - assign the values of the categories to a number.

E.g., .

Problem? The numbers you use specify a relationship between the categories.
For example, we are saying a Bachelors degree is above a HS diploma (in
particular, is worth 2x more). So .

.

Now this gives an interpretation that a HS diploma is worth more than a PhD
but less than a Bachelors?

What if the categories are completely unrelated like colours (green, blue, red,
yellow)?

(HS,B,M ,P ) = (1, 2, 3, 4)

β ​(B) =edu 2 × β ​(HS)edu

(HS,B,M ,P ) = (4, 7, 2, 3)
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One-hot encoding
Another solution is to use a technique called one-hot encoding. Create a set of
binary variables that take 0 or 1 depending if the variable belongs to a certain
category.

Use one-hot encoding when the categories have no ordinal relationship
between them.
E.g., if if we have (red, green, green, blue) the dummy encoded matrix could
be:

where the first column represents red, second green and third blue.

​ ​ ​ =

⎝

⎛R

G

G

B⎠

⎞
​ ​ ​ ​ ​ ,

⎝

⎛1
0
0
0

0
1
1
0

0
0
0
1⎠

⎞
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Dummy encoding
Technically, we cannot use one-hot encoding in linear regression, but instead
use a technique called dummy encoding.

We pick a base case, i.e. set the entry of the row of the matrix to be 0 if it’s the
base case.

Using the same example as before and we set ‘Red’ to be the base case we have:

where now the first column is green, second is blue. If both columns are 0, then
it represents red (implicitly).

Need this to prevent a singularity in , since the first column of  are
1’s (recall your definition of linear independence!)
Bonus question: What if we remove the intercept column in our design matrix

? Do we still need a base case?

​ ​ ​ =

⎝

⎛R

G

G

B⎠

⎞
​ ​ ​ ​ ,

⎝

⎛0
1
1
0

0
0
0
1⎠

⎞

(X X)⊤ X

X
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The matrix approach
TV radio sales

230.1 37.8 22.1

44.5 39.3 10.4

17.2 45.9 9.3

151.5 41.3 18.5

180.8 10.8 12.9

8.7 48.9 7.2

57.5 32.8 11.8

120.2 19.6 13.2

8.6 2.1 4.8

199.8 2.6 10.6

66.1 5.8 8.6

Y = Xβ + ϵ

X = ​ ​ ​ ​ ​ ​ ​β =

⎣

⎡ 1
1

⋮
1

x ​11

x ​21

⋮
x ​n1

x ​12

x ​22

⋮
x ​n2

…
…

⋱
…

x ​1p

x ​2p

⋮
x ​np

⎦

⎤

​ ​ ​Y =
⎣

⎡ β ​0

⋮
β ​p

⎦

⎤
​ ​

⎣

⎡ y ​1

y ​2

⋮
y ​n

⎦

⎤

library(tidyverse) 1
site <- url("https://www.statlearning.com/s/Advertising.csv")2
df_adv <- read_csv(site, show_col_types = FALSE)3
X <- model.matrix(~ TV + radio, data = df_adv);4
y <- df_adv[, "sales"]5

head(X)1

  (Intercept)    TV radio
1           1 230.1  37.8
2           1  44.5  39.3
3           1  17.2  45.9
4           1 151.5  41.3
5           1 180.8  10.8
6           1   8.7  48.9

head(y)1

# A tibble: 6 × 1
  sales
  <dbl>
1  22.1
2  10.4
3   9.3
4  18.5
5  12.9
6   7.2
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Brief refresher
Fitting: Minimise the residuals sum of squares

If  exists, it can be shown that the solution is given by:

Predicting: The predicted values are given by

​ ​

RSS = (y ​ − ​ ​) = ​(y ​ − ​ ​ − ​ ​x ​ − … − ​ ​x ​)
i=1

∑
n

i ŷi
2

i=1

∑
n

i β̂0 β̂1 i,1 β̂p i,p
2

= Y − Xβ (Y − Xβ)( )⊤

X X( ⊤ )
−1

​ =β̂ X X X Y .( ⊤ )
−1 ⊤

Y = X ​.β̂
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R’s lm and predict
​ =β̂ (X X) X Y⊤ −1 ⊤

model <- lm(sales ~ TV + radio, data = df_adv)1
coef(model)2

(Intercept)          TV       radio 
 2.92109991  0.04575482  0.18799423 

X <- model.matrix(~ TV + radio, data = df_adv)1
y <- df_adv$sales2
beta <- solve(t(X) %*% X) %*% t(X) %*% y3
beta4

                  [,1]
(Intercept) 2.92109991
TV          0.04575482
radio       0.18799423

=Ŷ X ​.β̂

budgets <- data.frame(TV = c(100, 200, 300), radio1
predict(model, newdata = budgets)2

       1        2        3 
11.25647 17.71189 24.16731 

X_new <- model.matrix(~ TV + radio, data = budgets1
X_new %*% beta2

      [,1]
1 11.25647
2 17.71189
3 24.16731
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Dummy encoding
Design matrices are normally an ‘Excel’-style table of covariates/predictors plus
a column of ones.

If categorical variables are present, they are added as dummy variables:

fake <- tibble(1
  speed = c(100, 80, 60, 60, 120, 40),2
  risk = c("Low", "Medium", "High",3
           "Medium", "Low", "Low")4
)5
fake6

# A tibble: 6 × 2
  speed risk  
  <dbl> <chr> 
1   100 Low   
2    80 Medium
3    60 High  
4    60 Medium
5   120 Low   
6    40 Low   

model.matrix(~ speed + risk, data = fake)1

  (Intercept) speed riskLow riskMedium
1           1   100       1          0
2           1    80       0          1
3           1    60       0          0
4           1    60       0          1
5           1   120       1          0
6           1    40       1          0
attr(,"assign")
[1] 0 1 2 2
attr(,"contrasts")
attr(,"contrasts")$risk
[1] "contr.treatment"
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Dummy encoding & collinearity
Why do dummy variables drop the last level?

X_dummy = model.matrix(~ risk, data = fake)1
as.data.frame(X_dummy)2

  (Intercept) riskLow riskMedium
1           1       1          0
2           1       0          1
3           1       0          0
4           1       0          1
5           1       1          0
6           1       1          0

solve(t(X_dummy) %*% X_dummy)1

            (Intercept)   riskLow riskMedium
(Intercept)           1 -1.000000       -1.0
riskLow              -1  1.333333        1.0
riskMedium           -1  1.000000        1.5

X_oh <- cbind(X_dummy, riskHigh = (fake$risk == "H1
as.data.frame(X_oh)2

  (Intercept) riskLow riskMedium riskHigh
1           1       1          0        0
2           1       0          1        0
3           1       0          0        1
4           1       0          1        0
5           1       1          0        0
6           1       1          0        0

solve(t(X_oh) %*% X_oh)1

Error in solve.default(t(X_oh) %*% X_oh): system is 
computationally singular: reciprocal condition number = 
6.93889e-18
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Test the Relationship Between the Response and
Predictors
The below is a test to if the multiple linear regression model is significantly
better than just predicting the mean .

Verify the F-test gives the same conclusion as the t-test on  for simple
linear regression!

Question: Given the individual p-values for each variable, why do we need to
look at the overall F-statistics?

Because a model with all insignificant p-values may jointly still be able to
explain a significant proportion of the variance.

Conversely, a model with significant predictors may still fail to explain a
significant proportion of the variance.

Ȳ

H ​ :0 β ​ =1 ⋯ = β ​ =p 0

H ​ :a at least one β ​ is non-zeroj

F-statistic = ​ ∼RSS/(n−p−1)
(TSS−RSS)/p

F ​p,n−p−1

β ​ =1  0
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Analysis of variance (ANOVA)
The sums of squares are interpreted as follows:

TSS is the total variability in the absence of knowledge of the variables
;

RSS is the total variability remaining after introducing the effect of ;

SSM is the total variability “explained” because of knowledge of .

X ​, … ,X ​1 p

X ​, … ,X ​1 p

X ​, … ,X1 p
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ANOVA
This partitioning of the variability is used in ANOVA tables:

Source Sum of squares DoF Mean square F p-value

Regression

Error

Total

SSM = ​( ​ −∑i=1
n

y ​î ​)ȳ 2 DFM = p MSM = ​DFM
SSM

​MSE
MSM 1 − F ​(F )DFM,DFE

SSE = ​(y ​ −∑i=1
n

i ​)y ​î
2 DFE = n − p − 1 MSE = ​DFE

RSS

SST = ​(y ​ −∑i=1
n

i ​)ȳ 2 DFT = n − 1 MST = ​DFT
TSS
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Model Fit and Predictions
Measure model fit (similar to the simple linear regression)

Residual standard error (RSE)

Uncertainties associated with the prediction
 are estimates. Still have the t-tests to test individual

significance.
linear model is an approximation

random error 

R =2 1 − ​TSS
RSS

​ ​, ​ ​, ⋯ , ​ ​β̂0 β̂1 β̂p

ϵ
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Advertising Example (continued)
Linear regression fit using TV and Radio:

What do you observe?
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Other Considerations in the Regression Model
Qualitative predictors

two or more levels, with no logical ordering
create binary (0/1) dummy variables

Need (#levels - 1) dummy variables to fully encode
Interaction terms  (removing the additive assumption)

Quadratic terms  (non-linear relationship)

(X ​X ​)i j

(X ​)i
2
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Example 7 - Data plot
The below data was generated by  where 

 and  with .
Y = 1 − 0.7 × X ​ +1 X ​ +2 ϵ X ​,X ​ ∼1 2

U [0, 10] ϵ ∼ N(0, 1) n = 30
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Example 7 - Model summary
The below data was generated by  where 

 and  with .
Y = 1 − 0.7 × X ​ +1 X ​ +2 ϵ X ​,X ​ ∼1 2

U [0, 10] ϵ ∼ N(0, 1) n = 30

Call:
lm(formula = Y ~ X1 + X2)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.6923 -0.4883 -0.1590  0.5366  1.9996 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.22651    0.45843   2.675   0.0125 *  
X1          -0.71826    0.05562 -12.913 4.56e-13 ***
X2           1.01285    0.05589  18.121  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8625 on 27 degrees of freedom
Multiple R-squared:  0.9555,    Adjusted R-squared:  0.9522 
F-statistic: 290.1 on 2 and 27 DF,  p-value: < 2.2e-16
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Example 8 - Data plot
The below data was generated by  where 

 and  with .
Y = 1 − 0.7 × X ​ +1 X ​ +2 ϵ X ​,X ​ ∼1 2

U [0, 10] ϵ ∼ N(0, 100) n = 30
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Example 8 - Model summary
The below data was generated by  where 

 and  with .
Y = 1 − 0.7 × X ​ +1 X ​ +2 ϵ X ​,X ​ ∼1 2

U [0, 10] ϵ ∼ N(0, 100) n = 30

Call:
lm(formula = Y ~ X1 + X2)

Residuals:
    Min      1Q  Median      3Q     Max 
-16.923  -4.883  -1.591   5.366  19.996 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)   3.2651     4.5843   0.712   0.4824  
X1           -0.8826     0.5562  -1.587   0.1242  
X2            1.1285     0.5589   2.019   0.0535 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.625 on 27 degrees of freedom
Multiple R-squared:  0.2231,    Adjusted R-squared:  0.1656 
F-statistic: 3.877 on 2 and 27 DF,  p-value: 0.03309
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The credit dataset

Qualitative covariates: own, student, status, region
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Linear Model selection
Various approaches - we will focus on

Subset selection
Indirect methods

Shrinkage (also called Regularization) (Later in the course)
Dimension Reduction (Later in the course)
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Subset selection
The classic approach is subset selection

Standard approaches include
Best subset

Forward stepwise
Backwards stepwise

Hybrid stepwise
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Best subset selection
Consider a linear model with  observations and  potential predictors:

Algorithm:

Consider the models with 0 predictors, and call this . This is the null
model
Consider all models with 1 predictor, pick the best fit, and call this 

Consider the model with  predictor, and call this . This is the full model

Pick the best fit of 

n p

Y = β ​ +0 β ​X ​ +1 1 β ​X ​ +2 2 ⋯ + β ​X ​p p

M ​0

M1

…

p M ​p

M ​, M ​, … , M ​0 1 p
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Best subset selection - behaviour
Considers all possible models, given the predictors

Optimal model  sets  parameters to 0, the rest are found using the
normal fitting technique

Picks the best of all possible models, given selection criteria
Very computationally expensive. Calculates:

M ​k p − k

​ ​ =
k=0

∑
p

(
k

p) 2  modelsp
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Stepwise Example: Forward stepwise selection
Algorithm:

Start with the null model 

Consider the  models with 1 predictor, pick the best, and call this 

Extend  with one of the  remaining predictors. Pick the best, and call
this 

End with the full model 

Pick the best fit of 

M ​0

p M ​1

M ​1 p − 1
M ​2

…

M ​p

M ​, M ​, … , M ​0 1 p
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Stepwise subset selection - behaviour
Considers a much smaller set of models, but the models are generally good
fits

Far less computationally expensive. Considers only:

Like best-subset, sets excluded predictor’s parameters to 0
Backward and forward selection give similar, but possibly different models

Assumes each “best model” with  predictors is a proper subset of the one
with size 

In other words, it only looks one step ahead at a time

Hybrid approaches exist, adding some variables, but also removing variables
at each step

​(p −
k=0

∑
p−1

k) = 1 + ​  models
2

p(p + 1)

n

n + 1
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Example: Best subset and forward selection on
Credit data

# Variables Best subset Forward stepwise

1 rating rating

2 rating, income rating, income

3 rating, income, student rating, income, student

4 cards, income, student, limit rating, income, student, limit
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How to determine the “best” model
Need a metric to compare different models

 can give misleading results as models with more parameters always have a
higher  on the training set:

RSS and  for each possible model containing a subset of the ten predictors in the Credit data set.

Want low test error:

Indirect: estimate test error by adjusting the training error metric due to
bias from overfitting

Direct: e.g., cross-validation, validation set - To be covered later

R2

R2

R2
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Indirect methods
1.  with  predictors:

Unbiased estimate of test MSE if  is an unbiased estimate of 

2. Akaike information criteria (AIC) with  predictors:

Proportional to  for least squares, so gives the same results

C ​p d

​ (RSS +
n

1
2d )σ̂2

σ̂2 σ2

d

​ (RSS +
n

1
2d )σ̂2

C ​p
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Indirect methods cont.
3. Bayesian information criteria (BIC) with  predictors

 for , so this is a much heavier penalty

4. Adjusted  with  predictors

Decreases in  from adding parameters are offset by the increase in

Popular and intuitive, but theoretical backing not as strong as the other
measures

d

​ (RSS +
n

1
log(n) d )σ̂2

log(n) > 2 n > 7

R2 d

1 − ​

TSS/(n − 1)
RSS/(n − d − 1)

RSS
1/(n − d − 1)
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How to determine the “best” model - Credit
dataset
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Potential Problems/Concerns
To apply linear regression properly:

The relationship between the predictors and response are linear and additive
(i.e. effects of the covariates must be additive);
Homoskedastic (constant) variance;

Errors must be independent of the explanatory variables with mean zero
(weak assumptions);

Errors must be Normally distributed, and hence, symmetric (only in case of
testing, i.e., strong assumptions).
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Recall Example 6 - The problems
Recall the below data was generated by  where 

 and  with .

Residuals do not have constant variance.

Residuals indicate a linear model is not appropriate.

Y = 1 + 0.2 ×X +2 ϵ X ∼
U [0, 10] ϵ ∼ N(0, 0.01) n = 30

Mean of the residuals: -1.431303e-16 
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Potential Problems/Concerns
1. Non-linearity of the response-predictor relationships

2. Correlation of error terms
3. Non-constant variance of error terms

4. Outliers
5. High-leverage points

6. Collinearity
7. Confounding effect (correlation does not imply causality!)
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1. Non-linearities
Example: residuals vs fitted for MPG vs Horsepower:

LHS is a linear model. RHS is a quadratic model.

Quadratic model removes much of the pattern - we look at these in more detail
later.
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2. Correlations in the Error terms
The assumption in the regression model is that the error terms are
uncorrelated with each other.

If they are not uncorrelated the standard errors will be incorrect.
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3. Non-constant error terms
The following are two regression outputs vs Y (LHS) and lnY (RHS)

In this example log transformation removed much of the heteroscedasticity.
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4. Outliers
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5. High-leverage points
The following compares the fitted line with (RED) and without (BLUE)
observation 41 fitted.
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High-leverage points
Have unusual predictor values, causing the regression line to be dragged
towards them

A few points can significantly affect the estimated regression line
Compute the leverage using the hat matrix:

Note that

so each prediction is a linear function of all observations, and  is the
weight of observation  on its own prediction

If , the predictor can be considered as having a high leverage

H = X(X X) X⊤ −1 ⊤

​ =y ​î ​h ​y ​ =
j=1

∑
n

ij j h ​y ​ +ii i ​h ​y ​

j=i

∑
n

ij j

h ​ =ii [H] ​ii

i

h ​ >ii 2(p + 1)/n
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High-leverage points (Example 1)
The below data was generated by  where  and

 with . We have added one high leverage point (made a red ‘+’
on the scatterplot).

This point  has a leverage value of 0.47 >> 4/30, depsite it not
being an outlier.

Y = 1 − 0.5 ×X + ϵ X ∼ U [0, 10]
ϵ ∼ N(0, 1) n = 30

(y = −7,x = 20)
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6. Collinearity
Two or more predictor values are closely related to each other (linearly
dependent)

If a column is linearly dependent on another, the matrix  is singular,
hence non-invertible.
Reduces the accuracy of the regression by increasing the set of plausible
coefficient values

In effect, the causes SE of the beta coefficients to grow.

Correlation can indicate one-to-one (linear) collinearity

(X X)⊤
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Collinearity makes optimisation harder

Contour plots of the values as a function of the predictors. Credit dataset
used.
Left: balance regressed onto age and limit. Predictors have low collinearity

Right: balance regressed onto rating and limit. Predictors have high
collinearity

Black: coefficient estimate
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Multicollinearity
Use variance inflation factor

 is the  from  being regressed onto all other predictors

Minimum 1, higher is worse (  or 10 is considered high)

Recall  measures the strength of the linear relationship between the
response variable  against the explanatory variables .

VIF( ​ ​) =β̂j ​

1 − R ​

X ​∣X ​j −j

2

1

R ​

X ​∣X ​j −j

2 R2 X ​j

> 5

R2

(X ​)j (X ​)−j
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Multicollinearity example - Plot
The below data was generated by  where 

,  and  with .
Y = 1 − 0.7 × X ​ +1 X ​ +2 ϵ X ​ ∼1

U [0, 10] X ​ =2 2X ​1 ϵ ∼ N(0, 1) n = 30
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Multicollinearity example - Summary and VIF
The below data was generated by  where 

, , where  is a small change (to make this
work) and  with .

High SE on the coefficient estimates making them unreliable.

Y = 1 − 0.7 × X ​ +1 X ​ +2 ϵ X ​ ∼1

U [0, 10] X ​ =2 2X ​ +1 ε ε ∼ N(0, 10 )−8

ϵ ∼ N(0, 1) n = 30

Call:
lm(formula = Y ~ X1 + X2)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.32126 -0.46578  0.02207  0.54006  1.89817 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept)  5.192e-01  3.600e-01   1.442   0.1607  
X1           5.958e+04  3.268e+04   1.823   0.0793 .
X2          -2.979e+04  1.634e+04  -1.823   0.0793 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8538 on 27 degrees of freedom
Multiple R-squared:  0.9614,    Adjusted R-squared:  0.9585 
F-statistic: 335.9 on 2 and 27 DF,  p-value: < 2.2e-16

VIF for X1: 360619740351 

VIF for X2: 360619740351 
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7. Confounding effects
But what about confounding variables? Be careful, correlation does not imply
causality!1

 is a confounder (confounding variable) of the relation between  and  if:

 influences  and  influences ,

but  does not influence  (directly).

C X Y

C X C Y

X Y

1. Check this website on .spurious correlations

90 / 100

https://www.tylervigen.com/spurious-correlations


Confounding effects
The predictor variable  would have an indirect influence on the dependent
variable .

Example: Age  Experience  Aptitude for mathematics. If experience
can not be measured, age can be a proxy for experience.

The predictor variable  would have no direct influence on dependent
variable .

Example: Being old doesn’t necessarily mean you are good at maths!
Hence, a predictor variable works as a predictor, but action taken on the
predictor itself will have no effect.

X

Y

⇒ ⇒

X

Y
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Confounding effects
How to correctly use/don’t use confounding variables?

If a confounding variable is observable: add the confounding variable.

If a confounding variable is unobservable: be careful with interpretation!
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Generalisations of the Linear Model
In much of the rest of this course, we discuss methods that expand the scope of
linear models and how they are fit:

Classification problems: logistic regression
Non-normality: Generalised Linear Model

Non-linearity: splines and generalized additive models; KNN, tree-based
methods

Regularised fitting: Ridge regression and lasso
Non-parametric: Tree-based methods, bagging, random forests and boosting,
KNN (these also capture non-linearities)
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Appendix: Sum of squares
Recall from ACTL2131/ACTL5101, we have the following sum of squares:

Here ,  (and ) denote sample (co-)variance.

​ ​ ​

S ​xx

S ​yy

S ​xy

= ​(x ​ − )
i=1

∑
n

i x 2

= ​(y ​ − ​)
i=1

∑
n

i y 2

= ​(x ​ − )(y ​ − ​)
i=1

∑
n

i x i y

⟹ s ​ = ​x
2

n − 1
S ​xx

⟹ s ​ = ​y
2

n − 1
S ​yy

⟹ s ​ = ​ ,xy
n − 1
S ​xy

s ​x
2 s ​y

2 s ​xy
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Appendix: CI for  and 
Rationale for : Recall that  is unbiased and . However  is
usually unknown, and estimated by  so, under the strong assumptions, we
have:

as  then .

Note: Why do we lose two degrees of freedom? Because we estimated two
parameters!

Similar rationale for .

β ​1 β ​0

β ​1 ​ ​β̂1 Var( ​ ​) =β̂1 σ /S ​

2
xx σ2

s2

​ =
s/ ​S ​xx

​ ​ − β ​β̂1 1
​ ​

∼

N (0,1)

​​

σ/ ​S ​xx

​ ​ − β ​β̂1 1 /

​χ ​/(n−2)n−2
2

​​​

n − 2
​

σ2
(n−2)⋅s2

t ​n−2

ϵ ​i ∼i.i.d.
N (0,σ )2

​ =
σ2

(n−2)⋅s2

​ ∼
σ2

​(y ​− ​ ​− ​ ​⋅x ​)∑
i=1
n

i β̂0 β̂1 i
2

χ ​n−2
2

β ​0
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Appendix: Statistical Properties of the Least
Squares Estimates
4. Under the strong assumptions of normality each component  is normally

distributed with mean and variance

and covariance between  and :

where  is the  diagonal entry of the matrix .
The standard error of  is estimated using 

​ ​β̂k

E[ ​ ​] =β̂k β ​, Var( ​ ​) =k β̂k σ ⋅2 c ​,kk

​ ​β̂k ​ ​β̂l

Cov( ​ ​, ​ ​) =β̂k β̂l σ ⋅2 c ​,kl

c ​kk k + 1( )th C = X X( ⊤ )
−1

​β̂k se( ​ ​) =β̂k s ​.c ​kk
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Simple linear regression: Assessing the Accuracy
of the Predictions - Mean Response
Suppose  is a specified value of the out of sample regressor variable and we
want to predict the corresponding  value associated with it. The mean of  is:

Our (unbiased) estimator for this mean (also the fitted value of ) is:

The variance of this estimator is:

Proof: See Lab questions.

x = x ​0

Y Y

​ ​

E[Y ∣ x ​]0 = E[β ​ + β ​x ∣ x = x ​]0 1 0

= β ​ + β ​x ​.0 1 0

y ​0

​ ​ =ŷ0 ​ ​ +β̂0 ​ ​x ​.β̂1 0

Var( ​ ​) =ŷ0 ​ + ​ σ =(
n

1
S ​xx

( − x ​)x 0
2

) 2 SE( ​ ​)ŷ0
2
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Simple linear regression: Assessing the Accuracy
of the Predictions - Mean Response
Using the strong assumptions, the  confidence interval for 

 (mean of ) is:

as we have and

Similar rationale to .

100 1 − α %( ) β ​ +0

β ​x ​1 0 Y

​ ±

​ ​ŷ0

​( ​ ​ + ​ ​x ​)β̂0 β̂1 0 t ​ ×1−α/2,n−2 ​,

( ​ ​)SÊ ŷ0

​s ​​ + ​

n

1
S ​xx

− x ​(x 0)2

​ ​ ∼ŷ0 N (β ​ +0 β ​x ​, SE( ​ ​) )1 0 ŷ0
2

​ ∼
( ​ ​)SÊ ŷ0

​ ​ − (β ​ + β ​x ​)ŷ0 0 1 0
t(n − 2).

slide
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Simple linear regression: Assessing the Accuracy
of the Predictions - Individual response
A prediction interval is a confidence interval for the actual value of a  (not for
its mean ). We base our prediction of  (given ) on:

The error in our prediction is:

with

Proof: See Lab questions.

Y ​i

β ​ +0 β ​x ​1 i Y ​i X = x ​i

​ ​ =ŷi ​ +β̂0 ​ ​x ​.β̂1 i

​

Y ​ − ​ ​ = β ​ + β ​x ​ + ϵ ​ − ​ ​ = E[Y ∣X = x ​] − ​ ​ + ϵ ​.i ŷi 0 1 i i ŷi i ŷi i

E Y ​ − ​∣X = x,X = x ​ =[ i ŷi i] 0,  and 

Var(Y ​ −i ​ ​∣X =ŷi x,X = x ​) =i σ (1 +2
​ +

n

1
​ ).

S ​xx

( − x ​)x i
2

99 / 100



Simple linear regression: Assessing the Accuracy
of the Predictions - Individual response
A % prediction interval for , the value of  at , is given by:

as

100(1 − α) Y ​i Y X = x ​i

​

​ ± t ​ ⋅ s ⋅ ​,

​ ​ŷi

​​ ​ + ​ ​x ​β̂0 β̂1 i 1−α/2,n−2 1 + ​ + ​

n

1
S ​xx

( − x ​)x i
2

(Y ​ −i ​ ​∣ ​ =ŷi X ​,X =x x ​) ∼i N (0,σ (1 +2
​ +

n

1
​ )),  and 

S ​xx

( − x ​)x i
2

​ ∼
s ​1 + ​ + ​

n
1

S ​xx

( −x ​)x i
2

Y ​ − ​ ​i ŷi
t ​.n−2
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