
Lab 2: Linear Regression I
ACTL3142 and ACTL5110

Questions

Conceptual Questions

Simple linear regression questions

1. ⋆ Prove that the Least Squared coefficient estimates (LSE) for β̂0 and β̂1 are:

β̂0 = y − β̂1x

β̂1 =
∑n

i=1(xi−x)·(yi−y)∑n

i=1(xi−x)2 = Sxy

Sxx

Solution

2. Prove that the estimates in Q1 are unbiased.

Solution

3. Prove that the MLE estimates of β̂0 and β̂1 are equal to the ones given by LSE (from
Q1).

Solution

4. Prove SST=SSE+SSM

Solution

5. Express SSM in terms of a) β1 and b) β2
1

Solution
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6. Prove the following variance formulas:

V
(
β̂0|X

)
= σ2

(
1
n

+ x2

Sxx

)

V
(
β̂1|X

)
= σ2

Sxx

Cov
(
β̂0, β̂1|X

)
= −xσ2

Sxx

Solution

7. Prove V(ŷ0|X) =
( 1

n
+ (x−x0)2

Sxx

)
σ2, where ŷ0 = β̂0 + β̂1x0.

Remember that (x0, y0) is a new (but fixed) observation, i.e. not in the training set used
to find β̂0 and β̂1.

Solution

8. Prove:

• E[Y0 − ŷ0|X] = 0

• V(Y0 − ŷ0|X) = σ2
(
1 + 1

n + (x−xi)2

Sxx

)
Solution

9. Forensic scientists use various methods for determining the likely time of death from
post-mortem examination of human bodies. A recently suggested objective method uses
the concentration of a compound (3-methoxytyramine or 3-MT) in a particular part of the
brain. In a study of the relationship between post-mortem interval and the concentration
of 3-MT, samples of the approximate part of the brain were taken from coroners cases for
which the time of death had been determined form eye-witness accounts. The intervals (x;
in hours) and concentrations (y; in parts per million) for 18 individuals who were found
to have died from organic heart disease are given in the following table. For the last
two individuals (numbered 17 and 18 in the table) there was no eye-witness testimony
directly available, and the time of death was established on the basis of other evidence
including knowledge if the individuals’ activities.

Observation number Interval (x) Concentration (y)
1 5.5 3.26
2 6.0 2.67
3 6.5 2.82
4 7.0 2.80
5 8.0 3.29
6 12.0 2.28
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7 12.0 2.34
8 14.0 2.18
9 15.0 1.97
10 15.5 2.56
11 17.5 2.09
12 17.5 2.69
13 20.0 2.56
14 21.0 3.17
15 25.5 2.18
16 26.0 1.94
17 48.0 1.57
18 60.0 0.61

∑
x = 337, ∑x2 = 9854.5, ∑ y = 42.98, ∑ y2 = 109.7936, ∑xy = 672.8

In this investigation you are required to explore the relationship between concentra-
tion (regarded the responds/dependent variable) and interval (regard as the explana-
tory/independent variable).

a. Construct a scatterplot of the data. Comment on any interesting features of the data
and discuss briefly whether linear regression is appropriate to model the relationship
between concentration of 3-MT and the interval from death.

b. Calculate the correlation coefficient for the data, and use it to test the null hypothesis
that the population correlation coefficient is equal to zero.

c. Calculate the equation of the least-squares fitted regression line and use it to estimate
the concentration of 3-MT:

i. after 1 day and

ii. after 2 days.

Comment briefly on the reliability of these estimates.

d. Calculate a 99% confidence interval for the slope of the regression line. Using this
confidence interval, test the hypothesis that the slope of the regression line is equal
to zero. Comment on your answer in relation to the answer given in part (2) above.

Solution

10. ⋆ A university wishes to analyse the performance of its students on a particular degree
course. It records the scores obtained by a sample of 12 students at the entry to the
course, and the scores obtained in their final examinations by the same students. The
results are as follows:
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Student A B C D E F G H I J K L
Entrance exam score x (%) 86 53 71 60 62 79 66 84 90 55 58 72
Final paper score y (%) 75 60 74 68 70 75 78 90 85 60 62 70

∑
x = 836, ∑ y = 867, ∑x2 = 60, 016, ∑ y2 = 63, 603, ∑(x − x)(y − y) = 1, 122.

a. Calculate the fitted linear regression equation of y on x.

b. Assuming the full normal model, calculate an estimate of the error variance σ2 and
obtain a 90% confidence interval for σ2.

c. By considering the slope parameter, formally test whether the data is positively
correlated.

d. Find a 95% confidence interval for the mean finals paper score corresponding to an
individual entrance score of 53.

e. Test whether this data come form a population with a correlation coefficient equal
to 0.75.

f. Calculate the proportion of variance explained by the model. Hence, comment on
the fit of the model.

Solution

11. ⋆ Complete the following ANOVA table for a simple linear regression with 60 observations:

Source D.F. Sum of Squares Mean Squares F-Ratio
Regression ____ ____ ____ ____
Error ____ ____ 8.2
Total ____ 639.5

Solution

12. ⋆ Suppose you are interested in relating the accounting variable EPS (earnings per share)
to the market variable STKPRICE (stock price). Then, a regression equation was fitted
using STKPRICE as the response variable with EPS as the regressor variable. Following
is the computer output from your fitted regression. You are also given that: x = 2.338,
y = 40.21, sx = 2.004, and sy = 21.56. (Note that: s2

x = Sxx
n−1 and s2

y = Syy

n−1)
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Regression Analysis
The regression equation is
STKPRICE = 25.044 + 7.445 EPS

Predictor Coef SE Coef T p
Constant 25.044 3.326 7.53 0.000
EPS 7.445 1.144 6.51 0.000

Analysis of Variance
SOURCE DF SS MS F p
Regression 1 10475 10475 42.35 0.000
Error 46 11377 247
Total 47 21851

a. Calculate the correlation coefficient of EPS and STKPRICE.

b. Estimate the STKPRICE given an EPS of $2. Provide a 95% confidence interval of
your estimate.

c. Provide a 95% confidence interval for the slope coefficient β.

d. Compute s and R2.

e. Describe how you would check if the errors have constant variance.

f. Perform a test of the significance of EPS in predicting STKPRICE at a level of
significance of 5%.

g. Test the hypothesis H0 : β = 24 against Ha : β > 24 at a level of significance of 5%.

Solution

13. (Modified from an Institute of Actuaries exam problem) An insurance company issues
house buildings policies for houses of similar size in four different post-code regions A, B,
C, and D. An insurance agent takes independent random samples of 10 house buildings
policies for houses of similar size in each of the four regions. The annual premiums (in
dollars) were as follows:

Region A : 229 241 270 256 241 247 261 243 272 219(∑
x = 2, 479, ∑

x2 = 617, 163
)

Region B : 261 269 284 268 249 255 237 270 269 257(∑
x = 2, 619, ∑

x2 = 687, 467
)

Region C : 253 247 244 245 221 229 245 256 232 269(∑
x = 2, 441, ∑

x2 = 597, 607
)

Region D : 279 268 290 245 281 262 287 257 262 246(∑
x = 2, 677, ∑

x2 = 718, 973
)
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Perform a one-way analysis of variance at the 5% level to compare the premiums for all
four regions. In order words, test whether the mean of each 4 region are significantly
different to each other. State briefly the assumptions required to perform this analysis of
variance.

Solution

14. (Past Institute Exam) As part of an investigation into health service funding a working
party was concerned with the issue of whether mortality could be used to predict sickness
rates. Data on standardised mortality rates and standardised sickness rates collected for
a sample of 10 regions and are shown in the table below:

Region Mortality rate m (per 100,000) Sickness rate s (per 100,000)
1 125.2 206.8
2 119.3 213.8
3 125.3 197.2
4 111.7 200.6
5 117.3 189.1
6 100.7 183.6
7 108.8 181.2
8 102.0 168.2
9 104.7 165.2
10 121.1 228.5

Data summaries: ∑m = 1136.1, ∑m2 = 129, 853.03, ∑ s = 1934.2, ∑ s2 = 377, 700.62,
and ∑ms = 221, 022.58.

a. Calculate the correlation coefficient between the mortality rates and the sickness rates
and determine the probability-value for testing whether the underlaying correlation
coefficient is zero against the alternative that it is positive.

b. Noting the issue under investigation, draw an appropriate scatterplot for these data
and comment on the relationship between the two rates.

c. Determine the fitted linear regression of sickness rate on mortality rate and test
whether the underlaying slope coefficient can be considered to be as large as 2.0.

d. For a region with mortality rate 115.0, estimate the expected sickness rate and
calculate 95% confidence limits for this expected rate.

Solution
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15. (Past institute Exam) Consider the following data, which comprise of four groups sizes
(y), each comprising four observations. In scenario I, information is also given on the sum
assured under the policy concerned - the sum assured is the same for all four policies in a
group. In scenario II, we regard the policies in the different groups as having been issued
by four different companies - the policies in a group are all issued the same company.

All monetary amounts are in units of £10,000. Summaries of the claim sizes in each
group are given in a second table.

Group 1 2 3 4
Claim sizes y 0.11 0.46 0.52 1.43 1.48 2.05 1.52 2.36

0.71 1.45 1.84 2.47 2.38 3.31 2.95 4.08
I: sum assured x 1 2 3 4
II: Company A B C D

Summaries of claim sizes:

Group 1 2 3 4∑
y 2.73 6.26 9.22 10.91∑
y2 2.8303 11.8018 23.0134 33.2289

a. In scenario I, suppose we adopt the linear regression model

Yi = α + βxi + ϵi

where Yi is the ith claim size and xi is the corresponding sum assured, i = 1, . . . , 16.

i. Calculate the total sum of squares and its partition into the regression (model)
sum of squares and the residual (error) sum of squares.

ii. Fit the model and calculate the fitted values for the first claim size of group 1
(namely 0.11) and the last claim size of group 4 (namely 4.08).

iii. Consider a test of the hypothesis H0 : β = 0 against a two-sided alterative. By
preforming appropriate calculations, assess the strength of the evidence against
this “no linear relationship” hypothesis.

b. In scenario II, suppose we adopt the analysis of variance model

Yij = µ + τi + eij

where Yij is the jth claim size for company i and τi is the ith company effect,
i = 1, 2, 3, 4 and j = A, B, C, D.
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i. Calculate the partition of the total sum of squared into the “between companies”
(model) sum of squares and the “within companies” (residual/error) sum of
squares.

ii. Fit the model.

iii. Calculate the fitted values for the first claim size of group 1 and the last claim
size of group 4.

iv. Consider a test of hypothesis H0 : τi = 0, i = A, B, C, D against a general
alternative. By preforming appropriate calculations, assess the strength of the
evidence against this “no company effects” hypothesis.

Solution

Multiple linear regression questions

1. Describe the null hypotheses to which the p-values given in Table 3.4 correspond. Explain
what conclusions you can draw based on these p-values. Your explanation should be
phrased in terms of sales, TV, radio, and newspaper, rather than in terms of the
coefficients of the linear model.

Solution

2. Suppose we have a data set with five predictors, X1 = GPA, X2 = IQ, X3 = Level (1
for College and 0 for High School), X4 = Interaction between GPA and IQ, and X5 =
Interaction between GPA and Level. The response is starting salary after graduation (in
thousands of dollars). Suppose we use least squares to fit the model, and get β0 = 50,
β1 = 20, β2 = 0.07, β3 = 35, β4 = 0.01, β5 = −10.

a. Which answer is correct, and why?

i. For a fixed value of IQ and GPA, high school graduates earn more, on average,
than college graduates.

ii. For a fixed value of IQ and GPA, college graduates earn more, on average, than
high school graduates.

iii. For a fixed value of IQ and GPA, high school graduates earn more, on average,
than college graduates provided that the GPA is high enough.

iv. For a fixed value of IQ and GPA, college graduates earn more, on average, than
high school graduates provided that the GPA is high enough.

b. Predict the salary of a college graduate with IQ of 110 and a GPA of 4.0.

c. True or false: Since the coefficient for the GPA/IQ interaction term is very small,
there is very little evidence of an interaction effect. Justify your answer.
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Solution

3. ⋆ I collect a set of data (n = 100 observations) containing a single predictor and a
quantitative response. I then fit a linear regression model to the data, as well as a
separate cubic regression, i.e. Y = β0 + β1X + β2X2 + β3X3 + ϵ.

a. Suppose that the true relationship between X and Y is linear, i.e. Y = β0 + β1X + ϵ.
Consider the training residual sum of squares (RSS) for the linear regression, and
also the training RSS for the cubic regression. Would we expect one to be lower than
the other, would we expect them to be the same, or is there not enough information
to tell? Justify your answer.

b. Answer (a) using test rather than training RSS.

c. Suppose that the true relationship between X and Y is not linear, but we don’t
know how far it is from linear. Consider the training RSS for the linear regression,
and also the training RSS for the cubic regression. Would we expect one to be
lower than the other, would we expect them to be the same, or is there not enough
information to tell? Justify your answer.

d. Answer (c) using test rather than training RSS.

Solution

4. a. Write down the design matrix for the simple linear regression model.

b. Write out the matrix X⊤X for the simple linear regression model.

c. Write out the vector X⊤y for the simple linear regression model.

d. Write out the matrix (X⊤X)−1 for the simple linear regression model.

e. Calculate β̂ = (X⊤X)−1X⊤y using your results above.

Where y is the vector of the response variable and β̂ is the vector of coefficients.

Solution

5. ⋆ The following model was fitted to a sample of supermarkets in order to explain their
profit levels:

y = β0 + β1x1 + β2x2 + β3x3 + ε

where

• y = profits, in thousands of dollars

• x1 = food sales, in tens of thousands of dollars

• x2 = nonfood sales, in tens of thousands of dollars, and

• x3 = store size, in thousands of square feet.
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The estimated regression coefficients are given below:

β̂1 = 0.027 and β̂2 = −0.097 and β̂3 = 0.525.

Which of the following is TRUE?

a. A dollar increase in food sales increases profits by 2.7 cents.

b. A 2.7 cent increase in food sales increases profits by a dollar.

c. A 9.7 cent increase in nonfood sales decreases profits by a dollar.

d. A dollar decrease in nonfood sales increases profits by 9.7 cents.

e. An increase in store size by one square foot increases profits by 52.5 cents.

Solution

6. ⋆ In a regression model of three explanatory variables, twenty-five observations were
used to calculate the least squares estimates. The total sum of squares and regression
sum of squares were found to be 666.98 and 610.48, respectively. Calculate the adjusted
coefficient of determination (i.e adjusted R2).

a. 89.0%

b. 89.4%

c. 89.9%

d. 90.3%

e. 90.5%

Solution

7. ⋆ In a multiple regression model given by:

y = β0 + β1x1 + . . . + βp−1xp−1 + ε,

which of the following gives a correct expression for the coefficient of determination (i.e
R2)?

I. SSM
SST

II. SST−SSE
SST

III. SSM
SSE

Options:

a. I only
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b. II only

c. III only

d. I and II only

e. I and III only

Solution

8. The ANOVA table output from a multiple regression model is given below:

Source D.F. SS MS F-Ratio Prob(> F )
Regression 5 13326.1 2665.2 13.13 0.000
Error 42 8525.3 203.0
Total 47 21851.4

Compute the adjusted coefficient of determination (i.e adjusted R2).

a. 52%

b. 56%

c. 61%

d. 63%

e. 68%

Solution

9. ⋆ You have information on 62 purchases of Ford automobiles. In particular, you have the
amount paid for the car y in hundreds of dollars, the annual income of the individuals x1
in hundreds of dollars, the sex of the purchaser (x2, 1=male and 0=female) and whether
or not the purchaser graduated from college (x3, 1=yes, 0=no). After examining the
data and other information available, you decide to use the regression model:

y = β0 + β1x1 + β2x2 + β3x3 + ε.

You are given that:

(
X⊤X

)−1
=


0.109564 −0.000115 −0.035300 −0.026804

−0.000115 0.000001 −0.000115 −0.000091
−0.035300 −0.000115 0.102446 0.023971
−0.026804 −0.000091 0.023971 0.083184


and the mean square error for the model is s2 = 30106. Calculate SE(β̂2).
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a. 0.17

b. 17.78

c. 50.04

d. 55.54

e. 57.43

Solution

10. Suppose in addition to the information in question 9., you are given:

X⊤y =


9 558

4 880 937
7 396
6 552

 .

Calculate the expected difference in the amount spent to purchase a car between a person
who graduated from college and another one who did not.

Possible answers:

a. 233.5
b. 1,604.3
c. 2,195.3
d. 4,920.6
e. 6,472.1

Solution

11. ⋆ A regression model of y on four independent variables x1, x2, x3 and x4 has been fitted
to a data consisting of 212 observations and the computer output from estimating this
model is given below:

Regression Analysis
The regression equation is
y = 3894 - 50.3 x1 + 0.0826 x2 + 0.893 x3 + 0.137 x4

Predictor Coef SE Coef T
Constant 3893.8 409.0 9.52
x1 -50.32 9.062 -5.55
x2 0.08258 0.02133 3.87
x3 0.89269 0.04744 18.82
x4 0.13677 0.05303 2.58

Which of the following statement is NOT true?
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a. All the explanatory variables have insignificant influence on y.

b. The variable x1 is a significant variable.

c. The variable x2 is a significant variable.

d. The variable x3 is a significant variable.

e. The variable x4 is a significant variable.

Where xi’s are vectors of explanatory variables and y is the vector of response variable.

Solution

12. The estimated regression model of fitting life expectancy from birth (LIFE_EXP) on the
country’s gross national product (in thousands) per population (GNP) and the percentage
of population living in urban areas (URBAN%) is given by:

LIFE_EXP = 48.24 + 0.79 GNP + 0.154 URBAN%.

For a particular country, its URBAN% is 60 and its GNP is 3.0. Calculate the estimated
life expectancy at birth for this country.

a. 49

b. 50

c. 57

d. 60

e. 65

Solution

13. What is the use of the scatter plot of the fitted values and the residuals?

a. to examine the normal distribution assumption of the errors

b. to examine the goodness of fit of the regression model

c. to examine the constant variation assumption of the errors

d. to test whether the errors have zero mean

e. to examine the independence of the errors

Solution
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KNN question

1. Consider a k-nearest neighbours model where Y = f(X) + ϵ, E(ϵ) = 0,V(ϵ) = σ2, and
the estimated model is f̂(x). The weight function is 1

k . Show that

EPEk(x0) = σ2 +

f(x0) − 1
k

∑
l∈N(x0)

f(x(l))

2

+ σ2

k

Where N(x0) are x0’s k-nearest neighbours. Note that:

EPEk(x0) = E[(Y − f̂(x0))2|X = x0]

Solution

Applied Questions

1. ⋆ (ISLR2, Q3.8) This question involves the use of simple linear regression on the Auto
data set.

a. Use the lm() function to perform a simple linear regression with mpg as the response
and horsepower as the predictor. Use the summary() function to print the results.
Comment on the output.
For example:

i. Is there a relationship between the predictor and the response?

ii. How strong is the relationship between the predictor and the response?

iii. Is the relationship between the predictor and the response positive or negative?

iv. What is the predicted mpg associated with a horsepower of 98? What are the
associated 95% confidence and prediction intervals?

b. Plot the response and the predictor. Use the abline() function to display the least
squares regression line.

c. Use the plot() function to produce diagnostic plots of the least squares regression
fit. Comment on any problems you see with the fit.

Solution

2. (ISLR2, Q3.11) In this problem we will investigate the t-statistic for the null hypothesis
H0 : β = 0 in simple linear regression without an intercept. To begin, we generate a
predictor x and a response y as follows.
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set.seed(1)
x <- rnorm(100)
y <- 2 * x + rnorm(100)

a. Perform a simple linear regression of y onto x, without an intercept. Report the
coefficient estimate β̂, the standard error of this coefficient estimate, and the t-
statistic and p-value associated with the null hypothesis H0 : β = 0. Comment on
these results. (You can perform regression without an intercept using the command
lm(y ~ x+0).)

b. Now perform a simple linear regression of x onto y without an intercept, and report
the coefficient estimate, its standard error, and the corresponding t-statistic and
p-values associated with the null hypothesis H0 : β = 0. Comment on these results.

c. What is the relationship between the results obtained in (a) and (b)?

d. For the regression of Y onto X without an intercept, the t-statistic for H0 : β = 0
takes the form β̂/SE(β̂), where β̂ is given by (3.38), and where

SE(β̂) =

√√√√ ∑n
i (yi − xiβ̂)2

(n − 1)∑n
i′=1 x2

i′

(These formulas are slightly different from those given in Sections 3.1.1 and 3.1.2,
since here we are performing regression without an intercept.) Show algebraically,
and confirm numerically in R, that the t-statistic can be written as

(
√

n − 1)∑n
i=1 xiyi√

(∑n
i=1 x2

i )(∑n
i′=1 y2

i′) − (∑n
i′=1 xi′yi′)2

e. Using the results from (d), argue that the t-statistic for the regression of y onto x is
the same as the t-statistic for the regression of x onto y.

f. In R, show that when regression is performed with an intercept, the t-statistic for
H0 : β1 = 0 is the same for the regression of y onto x as it is for the regression of x
onto y.

Solution
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Solutions

Conceptual Questions

Simple linear regression questions

1. We determine β̂0 and β̂1 by minimizing the error. Hence, we use least squares estimates
(LSE) for β̂0 and β̂1:

min
β0,β1

{
S
(
β̂0, β̂1

)}
= min

β0,β1

{
n∑

i=1

(
yi −

(
β̂0 + β̂1xi

))2
}

.

The minimum is obtained by setting the first order condition (FOC) to zero:

∂S
(
β̂0, β̂1

)
∂β̂0

= −2
n∑

i=1
yi −

(
β̂0 + β̂1xi

)
∂S
(
β̂0, β̂1

)
∂β̂1

= −2
n∑

i=1
xi

(
yi −

(
β̂0 + β̂1xi

))
.

The LSE β̂0 and β̂1 are given by setting the FOC equal to zero:
n∑

i=1
yi =nβ̂0 + β̂1

n∑
i=1

xi

n∑
i=1

xiyi =β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i .

So we have

β̂0 =
∑n

i=1 yi − β̂1
∑n

i=1 xi

n
= y − β̂1x, and

β̂1 =
∑n

i=1 xiyi − β̂0
∑n

i=1 xi∑n
i=1 x2

i

.

Next step: Rearranging so that β̂0 and β̂1 become functions of ∑n
i=1 yi,

∑n
i=1 xi,

∑n
i=1 x2

i ,
and ∑n

i=1 xiyi
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β̂0 =

∑n
i=1 yi −

(∑n

i=1 xiyi−β̂0
∑n

i=1 xi∑n

i=1 x2
i

)∑n
i=1 xi

n(
1 − (∑n

i=1 xi)2

n
∑n

i=1 x2
i

)
β̂0 =

∑n
i=1 x2

i

∑n
i=1 yi − (∑n

i=1 xiyi)
∑n

i=1 xi

n
∑n

i=1 x2
i

β̂0
∗=
∑n

i=1 yi
(∑n

i=1 x2
i

)
−
∑n

i=1 xiyi
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2 .

*(1 − a/b)c = d/b → (bc − ac)/b = d/b → c = d/(b − a).

And β̂0’s in line (6) was subbed into β̂1 in line (7). At this point, β̂0 is done. So we’ll
continue with β̂1.

From the previous steps we have:

β̂0 =
∑n

i=1 yi − β̂1
∑n

i=1 xi

n

β̂1 =
∑n

i=1 xiyi − β̂0
∑n

i=1 xi∑n
i=1 x2

i

.

thus:

β̂1 =
n
∑n

i=1 xiyi −
(∑n

i=1 yi − β̂1
∑n

i=1 xi

)∑n
i=1 xi

n
∑n

i=1 x2
i(

1 − (∑n
i=1 xi)2

n
∑n

i=1 x2
i

)
β̂1 =n

∑n
i=1 xiyi −

∑n
i=1 yi

∑n
i=1 xi

n
∑n

i=1 x2
i

β̂1
∗=n

∑n
i=1 xiyi −

∑n
i=1 yi

∑n
i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2 .

*(1 − a/b)c = d/b → (bc − ac)/b = d/b → c = d/(b − a).

Using the notations, we have an easier way to write β̂1:

β̂1 =n
∑n

i=1 xiyi −
∑n

i=1 yi
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

=
n
(∑n

i=1 xiyi −
∑n

i=1 yi
∑n

i=1 xi · n
n2

)
n
(∑n

i=1 x2
i − (∑n

i=1 xi)2 · n
n2

)
=
∑n

i=1 xiyi − nx y∑n
i=1 x2

i − nx2

∗=
∑n

i=1 xiyi −
∑n

i=1 xiy −
∑n

i=1 yix + nx y∑n
i=1 x2

i +∑n
i=1 x2 − 2∑n

i=1 xix

=
∑n

i=1(xi − x) · (yi − y)∑n
i=1(xi − x)2 = Sxy

Sxx
.
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*∑n
i=1 xiy = ∑n

i=1 xi

∑n

i=1 yi

n = ∑n
i=1 yi

∑n

i=1 xi

n = ∑n
i=1 yix = n

∑n

i=1 xi

n

∑n

i=1 yi

n = nxy.

2. For β̂0, using the equation in line (10) in Q1:

E
[
β̂0|X

]
= E

[∑n
i=1 yi

(∑n
i=1 x2

i

)
−
∑n

i=1 xiyi
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

]

=
∑n

i=1 E [yi]
(∑n

i=1 x2
i

)
−
∑n

i=1 xiE [yi]
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

=
∑n

i=1 (β0 + β1xi)
(∑n

i=1 x2
i

)
−
∑n

i=1 xi (β0 + β1xi)
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

= nβ0
(∑n

i=1 x2
i

)
−
∑n

i=1 (β0xi)
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

= β0.

For β̂1, using equation in line (13) from Q1:

E
[
β̂1|X

]
= E

[
n
∑n

i=1 xiyi −
∑n

i=1 yi
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

]

= n
∑n

i=1 xiE [yi] −
∑n

i=1 E [yi]
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

= n
∑n

i=1 xi (β0 + β1xi) −
∑n

i=1 (β0 + β1xi)
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

= β1
∑n

i=1 x2
i + n

∑n
i=1 xiβ0 −

∑n
i=1 β0

∑n
i=1 xi − β1 (∑n

i=1 xi) (∑n
i=1 xi)

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

= β1.

3. In the regression model there are three parameters to estimate: β0, β1, and σ2.

Joint density of Y1, Y2, . . . , Yn — under the (strong) normality assumptions — is the
product of their marginals (independent by assumption) so that the likelihood is:

L (β0, β1, σ; {(xi, yi)}n
i=1) =

n∏
i=1

1√
2πσ

exp
(

−(yi − (β0 + β1xi))2

2σ2

)

= 1
(2π)n/2 σn

exp
(

− 1
2σ2

n∑
i=1

(yi − (β0 + β1xi))2
)

ℓ (β0, β1, σ; {(xi, yi)}n
i=1) = −n log

(√
2πσ

)
− 1

2σ2

n∑
i=1

(yi − (β0 + β1xi))2 .
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Taking partial derivatives of the log-likelihood with respect to β0:

∂l

∂β0
=

n∑
i=1

(yi − β0 − β1xi)

=
n∑

i=1
yi − nβ0 − β1

n∑
i=1

xi .

Equate the above to 0 and solve for β0 should give

β̂0 = y − β̂1x .

Similarly, taking partial derivatives of the log-likelihood with respect to β1:

∂l

∂β1
=

n∑
i=1

2xi(yi − (β0 + β1xi))

= 2
(

n∑
i=1

xiyi −
n∑

i=1
xiβ0 −

n∑
i=1

β1x2
i )
)

= 2
(

n∑
i=1

xiyi −
n∑

i=1
xi(y − β1x) −

n∑
i=1

β1x2
i

)

=
n∑

i=1
xiyi −

n∑
i=1

xiy − β1

n∑
i=1

x2
i + β1

n∑
i=1

xix

=
n∑

i=1
xiyi − 1

n

n∑
i=1

xi

n∑
i=1

yi − β1

n∑
i=1

x2
i + β1

1
n

n∑
i=1

xi

n∑
i=1

xi .

The last line was derived using the fact that

x =
∑n

i=1 xi

n
.

Equate the above equation to 0 and solve for β1, we’ll get:

β̂1 = n
∑n

i=1 xiyi −
∑n

i=1 yi
∑n

i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2 .

The rest is the same as the derivation from Q1
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4. We have that

SST =
n∑

i=1
(yi − y)2 =

n∑
i=1

y2
i + y2 − 2yyi .

SSE + SSM =
n∑

i=1
(yi − ŷi)2 +

n∑
i=1

(ŷi − y)2

=
n∑

i=1

(
y2

i + ŷ2
i − 2yiŷi + ŷ2

i + y2 − 2yŷi

)
=

n∑
i=1

(
y2

i + 2ŷ2
i − 2yiŷi + y2 − 2yŷi

)
∗=

n∑
i=1

(
y2

i + 2ŷ2
i − 2(ŷi + ϵ̂i)ŷi + y2 − 2y(yi − ϵ̂i)

)
* using ϵ̂i = yi − ŷi, continue:

SSE + SSM =
n∑

i=1

(
y2

i + 2ŷ2
i − 2(ŷi + ϵ̂i)ŷi + y2 − 2y(yi − ϵ̂i)

)
=

n∑
i=1

(
y2

i − 2ŷiϵ̂i + y2 − 2yyi + 2yϵ̂i

)
∗∗=

n∑
i=1

(
y2

i + y2 − 2yyi

)
= SST .

** uses ∑ ϵ̂i = 0 (which is self-explanatory) and ∑xiϵ̂i = 0 (We’ll prove this at the end
of this question), we have the following results

n∑
i=1

2yϵ̂i = 2y
n∑

i=1
ϵ̂i = 0 ,

n∑
i=1

2ŷiϵ̂i =
n∑

i=1
2(β̂0 + β̂1xi)ϵ̂i .

*Proof of ∑xiϵ̂i = 0:*
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Using the estimates of β̂0 and β̂1, we have:
n∑

i=1
xiêi =

n∑
i=1

xi

(
yi − (β̂0 − β̂1x1)

)
=

n∑
i=1

xiyi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2
i

=
n∑

i=1
xiyi −

(
n∑

i=1

yi

n
− β̂1

n∑
i=1

xi

n

)
n∑

i=1
xi − β̂1

n∑
i=1

x2
1

=
n∑

i=1
xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
+ β̂1

(
(∑n

i=1 xi)2

n
−

n∑
i=1

x2
i

)
∗∗∗=

n∑
i=1

xiyi −
∑n

i=1 xi
∑n

i=1 yi

n
+ n

∑n
i=1 xiyi −

∑n
i=1 yi

∑n
i=1 xi

n
∑n

i=1 x2
i − (∑n

i=1 xi)2

(
(∑n

i=1 xi)2

n
−

n∑
i=1

x2
i

)

=
n∑

i=1
xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
−
(

n∑
i=1

xiyi −
∑n

i=1 xi
∑n

i=1 yi

n

)
= 0 .

*** uses equation (13) from Q1.

5. The SSM is
SSM =

n∑
i=1

(ŷi − y)2

=
n∑

i=1

(
β̂0 + β̂1 · xi − y

)2

=
n∑

i=1

(
(y − β̂1 · x) + β̂1 · xi − y

)2

=
n∑

i=1
β̂2

1 · (xi − x)2

b)=β̂2
1 · Sxx

a)= β̂1 · Sxy

using β̂1 = Sxy

Sxx
.

6. We first consider V
(
β̂1|X

)
.

Note that we have:

β̂1 =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2

∗=
∑n

i=1 (xi − x) yi∑n
i=1 (xi − x)2 .

*uses:
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n∑
i=1

(xi − x) y =y
n∑

i=1
xi −

n∑
i=1

x.y

=y.xn − y.xn = 0.

Therefore

V
(
β̂1|X

)
= V

(∑n
i=1 (xi − x) yi∑n
i=1 (xi − x)2

∣∣∣∣∣X
)

=
∑n

i=1 (xi − x)2 V (yi|X)(∑n
i=1 (xi − x)2

)2

= σ2∑n
i=1 (xi − x)2(∑n

i=1 (xi − x)2
)2 = σ2

Sxx
.

This uses V(yi|X) = σ2 because yi = β0 + β1xi + ϵi, where the β’s are constant and xi is
given, hence V(yi|X) = V(ϵ|X) = σ2.

We next consider V
(
β̂0|X

)
.

Using that:
β̂0 = y − β̂1x,

V
(
β̂0|X

)
=V

(
y − β̂1x|X

)
=V

(
1
n

n∑
i=1

yi | X

)
+ x2V

(
β̂1|X

)
= 1

n2

n∑
i=1

V (yi|X) /n2 + x2 σ2

Sxx

=σ2
(

1
n

+ x2

Sxx

)
.

Finally, we consider Cov
(
β̂0, β̂1|X

)
.

β̂0 = y − β̂1x,
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we have:
Cov

(
β̂0, β̂1|X

)
= Cov

(
y − β̂1x, β̂1|X

)
= Cov

(
−β̂1x, β̂1|X

)
= −x · Cov

(
β̂1, β̂1|X

)
= −x · V

(
β̂1|X

)
= −xσ2

Sxx
.

7. We have that

V (ŷ0|X) = V
(
β̂0 + β̂1x0|X

)
= V

(
β̂0|X

)
+ x2

0V
(
β̂1|X

)
+ 2x0Cov

(
β̂0, β̂1|X

)
=
(

1
n

+ x2

Sxx

)
σ2 + x2

0
σ2

Sxx
+ 2x0

(
−xσ2

Sxx

)

=
(

1
n

+ x2 − 2x0x + x2
0

Sxx

)
σ2

=
(

1
n

+ (x − x0)2

Sxx

)
σ2.

8. Expectation:

E [Y0 − ŷ0|X] = E [Y0|X] − E [ŷ0|X]

= E [β0 + β1x0 + ϵi] − E
[
(β̂0 + β̂1x0)|X

]
∗= β0 + β1x0 − (β0 + β1x0)
= 0.

*uses the fact that the expected value of the random error ϵ is 0.

Variance:

V (Y0 − ŷ0|X) = V (Y0|X) + V (ŷi|X) − 2 Cov (Y0, ŷ0|X)

= V (β0 + β1x0 + ϵ0|X) + σ2
(

1
n

+ (x − xi)2

Sxx

)
− 0

∗∗= σ2 + σ2
(

1
n

+ (x − xi)2

Sxx

)

= σ2
(

1 + 1
n

+ (x − xi)2

Sxx

)
.
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** uses V(β0 + β1x0|X) = 0 as it contains only constants, and the covariance is 0 because
the observed point is not used in making predictions, and should be independent of the
predicted point, and the conditional variance of ŷ0 was derived in earlier questions.
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Figure 1: Scatterplot of concentration against interval.

9. a. Interesting features are that, in general, the concentration of 3-MT in the brain
seems to decrease as the post mortem interval increases. Another interesting feature
is that we observe two observations with a much higher post mortem interval than
the other observations.
The data seems to be appropriate for linear regression. The linear relationship
seems to hold,especially for values of interval between 5 and 26 (we have enough
observations for that). Care should be taken into account when evaluating y for x
lower than 5 and larger than 26 (only two observations) because we do not know
whether the linear relationship between x and y still holds then.

b. We test:
H0 : ρ = 0 v.s. H1 : ρ ̸= 0
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The corresponding test statistic is given by:

T = R
√

n − 2√
1 − R2

∼ tn−2.

We reject the null hypothesis for large and small values of the test statistic.
We have n = 18 and the correlation coefficient is given by:

r =
∑

xi · yi − nxy√
(∑x2

i − nx2)(∑ y2
i − ny2)

= 672.8 − 18 · 337/18 · 42.98/18√
(9854.5 − 3372/18) · (109.7936 − 42.982/18)

= −0.827

Thus, the value of our test statistic is given by:

T = −0.827
√

16√
1 − (−0.827)2 = −5.89.

From Formulae and Tables page 163 we observe P(t16 ≤ −4.015) ∗= P(t16 ≥ 4.015) =
0.05%, * using symmetry property of the student-t distribution. We observe that
the value of our test statistic (-5.89) is smaller than -4.015, thus our p-value should
be smaller than 2 · 0.05% = 0.1%. Thus, we can reject the null hypothesis even at a
significance level of 0.1%, hence we can conclude that there is a linear dependency
between interval and concentration. Note that the alternative hypothesis is here
a linear dependency and not negative linear dependency, so you do accept the
alternative by rejecting the null hypothesis. Although, when you would use as
alternative hypothesis negative dependency, you would accept this alternative, due
to the construction of the test we have to use the phrase “a linear dependency” and
not “a negative linear dependency”.

c. The linear regression model is given by:

y = α + βx + ϵ

The estimate of the slope is given by:

β̂ =
∑

xiyi − n
∑

xi/n
∑

yi/n∑
x2

i − n(∑xi/n)2

=672.8 − 337 · 42.98/18
9854.4 − 3342/18 = −0.0372008

The estimate of the intercept is given by:

α̂ =y − β̂x

=42.98/18 + 0.0372008 · 337/18 = 3.084259
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Thus, the estimate of y given a value of x is given by:

ŷ =α̂ + β̂x

=3.084259 − 0.0372008x

i. One day equals 24 hours, i.e., x = 24, thus ŷ = α̂ + β̂24 = 3.084259 − 0.0372008 ·
24 = 2.19

ii. Two day equals 48 hours, i.e., x = 48, thus ŷ = α̂ + β̂24 = 3.084259 − 0.0372008 ·
48 = 1.30

The data set contains accurate data up to 26 hours, as for observations 17 and 18
(at 48 hour and 60 hours respectively) there was no eye-witness testimony direct
available. Predicting 3-MT concentration after 26 hours may not be advisable, even
though x = 48 is within the range of the x-values (5.5 hours to 60 hours).

d. The pivotal quantity is given by:

β − β̂

SE(β̂)
∼ tn−2.

First, we calculate

σ̂2 = 1
n − 2

(∑
y2

i − (
∑

yi)2/n − (∑xiyi −
∑

xi
∑

yi/n)2∑
x2

i − (∑xi)2/n

)

= 1
16

(
109.7936 − 42.982/18 − (672.8 − 337 · 42.98/18)2

9854.5 − 3372/18

)
= 0.1413014,

then the standard error is

SE(β̂) =
√

σ̂2∑
x2

i − nx2 =
√

0.1413014
9854.5 − 3372/18 = 0.00631331.

From Formulae and Tables page 163 we have t16,1−0.005 = 2.921. Using the test
statistic, the 99% confidence interval of the slope is given by:

β̂ − t16,1−α/2SE(β̂) <β < β̂ + t16,1−α/2SE(β̂)
−0.0372008 − 2.921 · 0.00631331 <β < −0.0372008 + 2.921 · 0.00631331

−0.055641979 <β < −0.0188.

Thus the 99% confidence interval of β is given by: (−0.055641979, −0.0188). Note
that β = 0 in not within the 99% confidence interval, therefore we would reject the
null hypothesis that β equals zero and accept the alternative that β ̸= 0 at a 1%
level of significance. This confirms the result in (2) where the correlation coefficient
was shown to not equal zero at the 1% significance level.
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10. a. The linear regression model is given by:

yi = α + βxi + ϵi,

where ϵi ∼ N(0, σ2) i.i.d. distributed for i = 1, . . . , n.
The fitted linear regression equation is given by:

ŷ = α̂ + β̂x.

The estimated coefficients of the linear regression model are given by (see Formulae
and Tables page 25):

β̂ = sxy

sxx
= 1122∑n

i=1 x2
i − nx2

= 1122

60016 − 12 ·
(

836
12

)2 = 1122
1774.67 = 0.63223

α̂ = y − β̂x =
∑n

i=1 yi

n
− β̂

∑n
i=1 xi

n

= 867
12 − 0.63223 · 836

12 = 28.205.

Thus, the fitted linear regression equation is given by:

ŷ = 28.205 + 0.63223 · x.

b. The estimate for σ2 is given by:

σ̂2 = 1
n − 2

n∑
i=1

(yi − ŷi)2

= 1
n − 2SSE

= 1
n − 2(SST − SSM)

∗= 1
n − 2

(
n∑

i=1
(yi − y)2 − β̂2

1 · Sxx

)

= 1
n − 2

(
n∑

i=1
y2

i − n · y2 − (∑n
i=1(xi − x)(yi − y))2∑n

i=1 x2
i − nx2

)

= 1
10 ·

(
63603 − 12 ·

(867
12

)2
− 11222

60016 − 8362/12

)
= 25.289 .

* uses the result from Q5 for SSM.
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We know the pivotal quantity:

s2

σ2/(n − 2) ∼ χ2
n−2 .

Note: we have n − 2 degrees of freedom because we have to estimate two parameters
form the data (α̂ and β̂). We have that s2 = σ̂2. Thus we have that the 90%
confidence interval is given by:

10σ̂2

χ2
0.95,10

< σ2 <
10σ̂2

χ2
0.05,10

10 · 25.289
18.3 < σ2 <

10 · 25.289
3.94

13.8 < σ2 < 64.2

Thus the 90% confidence interval of σ2 is given by (13.8, 64.2).

c. i. We test the following:

H0 : β = 0 v.s. H1 : β > 0,

with a level of significance α = 0.05.

ii. The test statistic is:

T = β̂ − β√
σ̂2/ (∑n

i=1(xi − x)2)
∼ tn−2

iii. The rejection region of the test is given by:

C = {(X1, . . . , Xn) : T ∈ (t10,1−0.05, ∞)} = {(X1, . . . , Xn) : T ∈ (1.812, ∞)}

iv. The value of the test statistic is given by:

T = 0.63223 − 0√
25.289/(∑n

i=1 x2
i − nx2)

= 0.63223 − 0√
25.289/(60016 − 8362/12)

= 5.296.

v. The value of the test statistic is in the rejection region, hence we reject the null
hypothesis of a zero correlation.

d. We have that (yi|xi)−(ŷ|xi)√
V(yi|xi)

has a student-t distribution:

yi|xi − ŷ|xi√
V(yi|xi)

∼ tn−2

The predicted value is given by:
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ŷ|xi = α̂ + β̂xi = 28.205 + 0.63223 · 53 = 61.713.

The estimated variance of the observation x = 53 is give by:

V(yi|xi = 53) =
(

1
n

+ (x − x)2∑n
i=1(xi − x)2

)
σ̂2

=
(

1
12 + (53 − 836/12)2

60016 − 8362/12

)
25.289 = 6.0657.

Thus, the 95% confidence interval for the value of y given that x = 53 is given by:

ŷ − t1−0.05/2 ·
√
V(yi|xi = 53) < y|x = 53 < ŷ + t1−0.05/2 ·

√
V(yi|xi = 53)

61.713 − 2.228 ·
√

6.0657 < y|x = 53 < 61.713 + 2.228 ·
√

6.0657
56.2 < y|x = 53 < 67.2

Thus the 95% confidence interval of y given x = 53 is (56.2, 67.2).

e. i. We test the following hypothesis:

H0 : ρ = 0.75 v.s. H1 : ρ ̸= 0.75

ii. The test statistic is given by:

T = Zr − zρ√
1

n−3

∼ N(0, 1)

iii. The critical region is given by:

C = {(X1, . . . , Xn) : T ∈ {(−∞, −z1−α/2) ∪ (z1−α/2, ∞)}}

iv. The value of the test statistic is given by:
Zr − zρ√

1
9

= 3(zr − zρ) = 3(1.2880 − 0.97296) = 0.94512

where
zr =1

2 log
(1 + 0.85860

1 − 0.85860

)
= 1.2880

zρ = 1
2 log

(1 + 0.75
1 − 0.75

)
= 0.97296

r =
∑n

i=1(xi − x)(xi − y)√∑n
i=1(xi − x)2∑n

i=1(yi − y)2

= 1122
(∑n

i=1 y2
i − ny2

i )(∑n
i=1 x2

i − nx2)

= 1122√
962.25 · 1774.667

= 0.85860
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v. We have that z0.82894 = 0.95. Thus, the p-value is given by 2 · (1 − 0.82894) =
0.34212. The value of the test statistic is not in the critical region if the
level of significance is lower than 0.34212 (which is normally the case). Hence,
for reasonable values of the level of significance we would not reject the null
hypothesis.

f. The proportion of the variability explained by the model is given by:

R2 =SSM
SST = 1 − SSE

SST

=1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − yi)2

=1 −

∑n
i=1 y2

i − ny2 − (∑n

i=1(xi−x)(yi−y))2∑n

i=1 x2
i −nx2∑n

i=1 y2
i − ny2

i

= (∑n
i=1(xi − x)(yi − y))2

(∑n
i=1 y2

i − ny2
i )(∑n

i=1 x2
i − nx2)

= 11222

962.25 · 1774.667 = 0.737193.

Hence, a large proportion of the variability of Y is explained by X.

11. The completed ANOVA table is given below:

Source D.F. Sum of Squares Mean Squares F-Ratio
Regression 1 639.5 − 475.6 = 163.9 163.9 163.9

8.2 = 19.99
Error 58 8.2 × 58 = 475.6 8.2
Total 59 639.5

12. A simple linear regression problem:

a. Since we know that β̂ = r
sy

sx
, then r = β̂ sx

sy
= 7.445(2.004/21.56) = 69.2%. where

sx, sy are sample standard deviations. Alternatively, you can use the fact that
R2 = r2, so that from 4. below, r2 = 0.4794 =⇒ r = +

√
0.4794 = 69.2%. You take

the positive square root because of the positive sign of the coefficient of EPS.

b. Given EPS = 2, we have:

̂STKPRICE = 25.044 + 7.445 (2) = 39.934.
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A 95% confidence interval of this estimate is given by:

(
α̂ + β̂x0

)
± t1−α/2,n−2 × s

√√√√( 1
n

+ (x − x0)2

(n − 1) s2
x

)

= (39.934) ± t1−0.025,46︸ ︷︷ ︸
=2.012896

×
√

247

√√√√( 1
48 + (2.338 − 2)2

(47) (2.0042)

)

= 39.934 ± 4.636 = (35.298, 44.570) .

where s2
x is the sample variance of X.

c. A 95% confidence interval for β is:

β̂ ± t1−α/2,n−2 · SE(β̂) = 7.445 ± 2.0147 ×
√

247
2.004

√
47

= 7.445 ± 2.305
= (5.14, 9.75) .

d. s =
√

247 = 15.716 and R2 = SSM
SST = 10475

21851 = 47.94%.

e. A scatter plot or diagram of the fitted values against the residuals (standardised)
will provide us an indication of the constancy of the variation in the errors.

f. To test for the significance of the variable EPS, we test H0 : β = 0 against Ha : β ̸= 0.
The test statistic is:

t(β̂) = β̂

SE(β̂)
= 7.445

1.144 = 6.508.

This is larger than t1−α/2,n−2 = 2.0147 and therefore we reject the null. There is
evidence to support the fact that the EPS variable is a significant predictor of stock
price.

g. To test H0 : β = 24 against Ha : β > 24, the test statistic is given by:

t(β̂) = β̂ − β0

SE(β̂)
= 7.445 − 24

1.144 = −14.47.

Thus, since this test statistic is smaller than t1−α,n−2 = t0.95,46 = 1.676, do not
reject the null hypothesis.

13. The grand total sum is ∑x = 2479 + 2619 + 2441 + 2677 = 10216 so that the grand mean
is x = 10216/40 = 255.4. Also, ∑x2 = 617163 + 687467 + 597607 + 718973 = 2621210.
Therefore the total sum of squares is:

SST =
∑

(x − x)2 =
∑

x2 − Nx
2

= 2621210 − (40)(255.4)2 = 12043.6.
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The sum of squares between the regions is:

SSM =
∑

ni (xi. − x)2

= 10
(
(247.9 − 255.4)2 + (261.9 − 255.4)2 + (244.1 − 255.4)2 + (267.7 − 255.4)2

)
= 3774.8.

The difference gives the sum of squares within the regions:

SSE = SST − SSM = 12043.6 − 3774.8 = 8268.8.

The one-way ANOVA table is then summarised below:

ANOVA Table for the One-Way Layout
Source d.f. Sum of Squares Mean Square F-Statistic
Between 3 3774.8 1258.27 1258.27

229.69 = 5.478
Within 36 8268.8 229.69
Total 39 12043.6

Thus, to test the equality of the mean premiums across the regions, we test:

H0 : αA = αB = αC = αD = 0 all variances are equal

against the alternative:

Ha : at least one α is not zero all variances are equal

using the F -test. Since F = 5.478 > F0.95 (3, 36) = 2.9 (approximately), we therefore
reject H0. There is evidence to support a difference in the mean premiums across regions.
The one-way ANOVA model assumptions are as follows: each random variable xij is
observed according to the model

xij = µ + αi + εij , for i = 1, . . . , I, and j = 1, 2, . . . , ni

where εij refers to the random error in the jth observation of the ith treatment which
satisfies:

• E [εij ] = 0 and V (εij) = σ2 for all i, j.

• The εij are independent and normally distributed (normal errors), and where µ is
the overall mean and αi is the effect of the ith treatment with:

I∑
i=1

αi = 0.
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14. a. We have the estimated correlation coefficient:

r = sms√
smm · sss

=
∑

ms − nms√
(∑m2 − nm2) · (∑ s2 − ns2)

= 221, 022.58 − 1136.1 · 1934.2/10√
(129, 853.03 − 1136.12/10) · (377, 700.62 − 1934.22/10)

= 0.764.

i. We have the hypothesis:

H0 : ρ = 0 v.s. H1 : ρ > 0

ii. The test statistic is:
T = r

√
n − 2√

1 − r2
∼ tn−2

iii. The critical region is given by:

C = {(X1, . . . , Xn) : T ∈ (tn−2,1−α, ∞)}

iv. The value of the test is:

T = r
√

n − 2√
1 − r2

= 0.764
√

10 − 2√
1 − 0.7642

= 3.35

v. We have t8,1−0.005 = 3.35. Thus the p-value is 0.005 and we reject the null
hypothesis of a zero correlation for level of significance less than 0.005 (usually
it is larger, thus then we reject the null).

b. Given the issue of whether mortality can be used to predict sickness, we require a
plot of sickness against mortality:
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Figure 2: Scatterplot of sickness and mortality.

There seems to be an increase linear relationship such that mortality could be used
to predict sickness.
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c. We have the estimates:

β̂ = sms

smm
=
∑

ms − nms∑
m2 − nm2

=221, 022.58 − 1136.1 · 1934.2/10
129, 853.03 − 1136.12/10 = 1.6371

α̂ =y − β̂x = 1934.2
10 − 1.63711136.1

10 = 7.426

σ̂2 = 1
n − 2

n∑
i=1

(yi − ŷi)2 = 1
n − 2

(
sss − s2

ms

smm

)

=1
8

(
(
∑

s2 − ns2) − (∑ms − nms)2

(∑m2 − nm2)

)

=1
8

(
3587.656 − (1278.118)2

780.709

)
= 186.902

V(β̂) =σ̂2/smm = 186.902/780.709 = 0.2394

i. Hypothesis:
H0 : β = 2 v.s. H1 : β < 2

ii. Test statistic:
T = β̂ − β√

σ̂2/sxx

∼ tn−2

iii. Critical region:

C = {(X1, . . . , Xn) : T ∈ (−∞, −tn−2,1−α)}

iv. Value of statistic:

T = β̂ − β√
σ̂2/sxx

= 1.6371 − 2√
0.2394

= −0.74

v. We have from Formulae and Tables page 163: t8,1−0.25 = 0.7064 and t8,1−0.20 =
0.8889. Thus the p-value (using symmetry) is between 0.2 and 0.25. Thus, we
accept the null hypothesis if the level of significance is smaller than the p-value
(which is usually the case). Note: exact p-value using computer package is
0.2402.

d. For a region with m = 115 we have the estimated value:

ŝ = 7.426 + 1.6371 · 115 = 195.69
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with corresponding variance:

σ̂2

(
1
n

+ (x0 − x)2

smm

)
= 186.902

(
1
10 + (115 − 113.61)2

780.709

)
= 19.1528

The corresponding 95% confidence limits are 195.69 − t8,1−0.025 · SE(s|m = 115) =
195.69 − 2.306 ·

√
19.1528 = 185.60 and 195.69 + t8,1−0.025 · SE(s|m = 115) =

195.69 + 2.306 ·
√

19.1528 = 205.78.

15. a. i. We have:

SST =
∑

y2 −
(∑

y
)2

/n = 70.8744 − 29.122/16 = 17.8760 ,∑
x = 4 · (1 + 2 + 3 + 4) = 40

∑
x2 = 4 · (12 + 22 + 32 + 42) = 120 ,∑

xy = 1 · 2.73 + 2 · 6.26 + 3 · 9.22 + 4 · 10.91 = 86.55 ,

sxy =
∑

xy −
∑

x
∑

y/n = 86.55 − 40 · 29.12/16 = 13.75 ,

SSM = β̂2
1 · sxx =

(13.75
20

)2
· 20 = 9.453125 ,

SSE = SST − SSM = 17.8760 − 9.453125 = 8.422875.

ii. We have:
β̂ = sxy

sxx
= 13.75

20 = 0.6875

α̂ = y − β̂x = (29.12 − 0.6875 · 40)/16 = 0.1012 .

Thus, the fitted model is given by ŷ = α̂ + β̂x = 0.1012 + 0.6875x.
For x = 1 we have: ŷ = α̂ + β̂x = 0.1012 + 0.6875 · 1 = 0.7887
For x = 4 we have: ŷ = α̂ + β̂x = 0.1012 + 0.6875 · 4 = 2.8512

iii. We have SE(β̂) =
√

8.4229/14
20 = 0.1734.

i) Hypothesis:
H0 : β = 0 v.s. H1 : β ̸= 0

ii) Test statistic:

T = β̂ − β

SE(β̂)
∼ tn−2

iii) Critical region:

C = {(X1, . . . , Xn) : T ∈ {(−∞, −tn−2,1−α/2) ∪ (tn−2,1−α/2, ∞)}}

iv) Value of statistic:

T = β̂ − β

SE(β̂)
= 0.6875 − 0

0.1734 = 3.965
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v) We have t14,1−0.001 = 3.787 and t14,1−0.0005 = 4.140. Thus the p-value is
between 0.1% and 0.2%. Accept the null hypothesis if the level of significance is
lower than the p-value (which is usually not the case). Hence, we have strong
evidence against the “no linear relationship” hypothesis. Note: exact p-value
using computer package is 0.00070481.

b. i. Calculating the sums of squares in this question is done similarly to question
13. We have:

SST = 17.8760 ,

SSM =
∑

ni (yi· − y)2 = 4
∑

(yi − y)2 = 9.6709 ,

SSE = SST − SSM = 17.8760 − 9.6709 = 8.2051 .

ii.
µ̂ =29.12/16 = 1.82
τ̂1 =2.73/4 − 1.82 = −1.1375
τ̂2 =6.26/4 − 1.82 = −0.255
τ̂3 =9.22/4 − 1.82 = 0.485
τ̂4 =10.91/4 − 1.82 = 0.9075

iii. Company A: fitted value = 2.73/4 = 0.6825
Company D: fitted value = 10.91/4 = 2.7275

iv. Observed F statistic is (9.6709/3)/(8.2051/12) = 4.715 on (3,12) d.f..

v. From Formulae and Tables page 173 and 174 we observe that F3,12(4.474) = 2.5%
and F3,12(5.953) = 1%. Thus the p-value is between 0.025 and 0.01, so we have
some evidence against the “no company effects” hypothesis. Note: exact p-value
using computer package is 0.0213.

Multiple linear regression questions

1. In Table 3.4, the null hypothesis for TV is that in the presence of radio ads and newspaper
ads, TV ads have no effect on sales. Similarly, the null hypothesis for radio is that in
the presence of TV and newspaper ads, radio ads have no effect on sales. (And there is a
similar null hypothesis for newspaper.) The low p-values of TV and radio suggest that
the null hypotheses are false for TV and radio. The high p-value of newspaper suggests
that the null hypothesis is true for newspaper.
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2. The fitted model is given by

Y = 50 + 20 GPA + 0.07 IQ + 35 Gender + 0.01GPA × IQ − 10 GPA × Gender.

For males, Gender = 0, so

Y = 50 + 20 GPA + 0.07 IQ + 0.01GPA × IQ.

For females, Gender = 1, so

Y = 85 + 10 GPA + 0.07 IQ + 0.01GPA × IQ.

a. False. For a fixed value of IQ and GPA, if GPA < 3.5, males earn less on average
than females.

b. False. For a fixed value of IQ and GPA, if GPA > 3.5, females earn less on average
than males.

c. True. For a fixed value of IQ and GPA, if GPA > 3.5, males earn more on average
than females.

d. False. See above.

3. a. I would expect the polynomial regression to have a lower training RSS than the
linear regression because it could make a tighter fit against data that matched with
a wider irreducible error V(ϵ).

b. I would expect the polynomial regression to have a higher test RSS as the overfit
from training would have more error than the linear regression.

c. Polynomial regression has lower train RSS than the linear fit because of higher
flexibility: no matter what the underlying true relationship is the more flexible
model will closer follow points and reduce train RSS. An example of this behaviour
is shown on Figure 2.9 from Chapter 2.

d. There is not enough information to tell which test RSS would be lower for either
regression given the problem statement is defined as not knowing “how far it is from
linear” If it is closer to linear than cubic, the linear regression test RSS could be
lower than the cubic regression test RSS. Or, if it is closer to cubic than linear, the
cubic regression test RSS could be lower than the linear regression test RSS. It is
dues to bias-variance trade-off: it is not clear what level of flexibility will fit data
better.

4. a. The design matrix is

X = [1n x] =


1 x1
1 x2
...

...
1 xn
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b. The matrix X⊤X is

X⊤X =
[

1 1 . . . 1
x1 x2 . . . xn

]
1 x1
1 x2
...

...
1 xn

 =
[

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x2

i

]
= n

[
1 x
x 1

n

∑n
i=1 x2

i

]

c. The matrix X⊤y is

X⊤y =
[

1 1 . . . 1
x1 x2 . . . xn

]
y1
y2
...

yn

 =
[ ∑n

i=1 yi∑n
i=1 xiyi

]

d. Note: the inverse of a 2 × 2 matrix is given by:

M−1 =
[

a b
c d

]−1

= 1
det(M) ·

[
d −b

−c a

]
= 1

ad − bc
·
[

d −b
−c a

]

Using this and the result from 2. we have:

(X⊤X)−1 = 1
n
∑n

i=1 x2
i − n2x2 ·

[ ∑n
i=1 x2

i −nx
−nx n

]
= 1

sxx
·
[

1
n

∑n
i=1 x2

i −x
−x 1

]

e. Using the result of 3. and 4. we have:

β̂ =(X⊤X)−1X⊤y = 1
sxx

·
[

1
n

∑n
i=1 x2

i −x
−x 1

] [ ∑n
i=1 yi∑n

i=1 xiyi

]

= 1
sxx

[ ∑n
i=1 yi · 1

n

∑n
i=1 x2

i −
∑n

i=1 xiyi · x
−
∑n

i=1 yi · x +∑n
i=1 xiyi · 1

]
=
[

y
∑n

i=1 x2
i −

∑n
i=1 xiyi · x∑n

i=1 xiyi − nxy

]

=
[

y
(∑n

i=1 x2
i − nx2)−

(∑n
i=1 xiyi · x − nx2y

)∑n
i=1 xiyi − nxy

]

=
[

y
(∑n

i=1 x2
i − nx2)− x (∑n

i=1 xiyi − nxy)∑n
i=1 xiyi − nxy

]
=
[

y − sxy

sxx
x

sxy

sxx

]

5. Statement (E) is correct. Note that statement (A) is incorrect because, if food sales
increases with one, the expected profit increases with β̂1 · 10 (note the difference in the
scale of profit (thousands) and food sales (in ten thousands). Similarly, (B), (C) and (D)
are incorrect.
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6. Statement (D) is correct. We have n = 25 observations, p = 3 + 1 = 4 parameters (three
explanatory variables and the constant), SST = 666.98, and SSM = 610.48. Thus we
have:

SSE = SST − SSM = 666.98 − 610.48 = 56.5

R2
a = 1 − SSE/(n − p)

SST/(n − 1) = 1 − 56.5/(25 − 4)
666.98/(25 − 1) = 1 − 56.5/21

666.98/24 = 0.903 .

7. Statement (D) is correct.

R2 ∗= SSM
SST

∗∗= SST − SSE
SST I and II correct

∗= SSM
SST

∗∗= SSM
SSM + SSE ̸= SSM

SSE because SSM> 0, III incorrect

* using definition of R2 and ** using SST=SSM+SSE.

8. Statement (B) is correct.

R2
a = 1 − SSE/(n − p)

SST/(n − 1) = 1 − 8525.3/(47 − 5)
21851.4/(48 − 1) = 1 − 8525.3/42

21851.4/46 = 0.563

9. Statement (D) is correct. Let C = (X⊤X)−1 and c33 the third diagonal element of the
matrix C. We have:

SE
(
β̂2
)

=
√

c33 · s2 =
√

0.102446 · 30106 = 55.535928

10. Statement (C) is correct. We have:

β̂ = (X⊤X)−1X⊤y

In order to find the estimate of the parameter related to x3 (having graduated from
college) we need the fourth (note β1 corresponds to the constant) row of the matrix
(X⊤X)−1 and multiply that with the vector X⊤y. We have:

β̂3 =
[

−0.026804 −0.000091 0.023971 0.083184
] 

9, 558
4, 880, 937

7, 396
6, 552

 = 21.953

Note that y is in hundreds of dollars, so having a graduated from college leads to
21.953 · 100 = 2, 195.3 on the amount paid for a car.

40



11. Statement (A) is correct. We have that the distribution of β̂k for k = 1, . . . , p is given by:

β̂k − βk

SE
(
β̂k

) ∼ tn−p

We have p = 5, and n = 212. Note, n−p is large, thus the standard normal approximation
for the student-t is appropriate (Formulae and Tables page 163 only shows a table for
degrees of freedom up to 120 and ∞ = standard normal). We have z1−0.05/2 = 1.96. This
provides the well-known rule of thumb that the absolute value of the T value should be
larger than 2 for parameter estimates to be significant (|T | > 2). This is the case for all
parameters.

12. Statement (D) is correct.

LIFE_EXP = 48.24 + 0.79 GNP + 0.154 URBAN%
= 48.24 + 0.79 · 3 + 0.154 · 60
= 59.85

13. Statement (C) is correct.

a. Can be done by the scatterplot, but a QQ-plot is better.

b. Can be done by the scatterplot, but R2 is better method.

c. Is the correct one, need both the errors and the corresponding value of the endogenous
variable.

d. Should be by definition by selecting the LS estimator, so does not need to be tested.

e. Errors should be independent of X not Y .

KNN question

1.

EPEk(x0) = E[(Y − f̂(x0))2|X = x0]
= E[(ϵ + f(X) − E(f̂(x0)) + E(f̂(x0)) − f̂(x0))2|X = x0]
= E[ϵ2 + (f(x0) − E(f̂(x0)))2 + (E(f̂(x0)) − f̂(x0))2 − 2ϵ(f(x0) − f̂(x0))+
2(E(f̂(x0)) − f̂(x0))(f(x0) − E(f̂(x0)))]
= E[ϵ2 + (f(x0) − E(f̂(x0)))2 + (E(f̂(x0)) − f̂(x0))2]

= σ2 +

f(x0) − 1
k

∑
l∈N(x0)

f(x(l))

2

+ σ2

k
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Note that ϵ is independent zero-mean noise, and:

E(E(f̂(x0)) − f̂(x0))(f(x0) − E(f̂(x0))) = E[E(f̂(x0))f(x0) − f̂(x0)f(x0) − (E(f̂(x0)))2+
f̂(x0)E(f̂(x0))]
= 0 since f(x0)’s true value constant for fixed X = x0

Applied Questions

1. a. Please install the package and load the data by the following command first.

install.packages("ISLR2")

library(ISLR2)

fit <- lm(mpg ~ horsepower, data = Auto)
summary(fit)

Call:
lm(formula = mpg ~ horsepower, data = Auto)

Residuals:
Min 1Q Median 3Q Max

-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

i. Yes

ii. Very significant (p-value of < 2.10−16)

iii. Negative

iv. predict(fit, newdata = data.frame(horsepower = c(98)), interval = "confidence")

fit lwr upr
1 24.46708 23.97308 24.96108
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predict(fit, newdata = data.frame(horsepower = c(98)), interval = "prediction")

fit lwr upr
1 24.46708 14.8094 34.12476

b. plot(Auto$horsepower, Auto$mpg)
abline(a = fit$coefficients[1], b = fit$coefficients[2])
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c. par(mfrow = c(2, 2))
plot(fit)
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There appears to be some trend in the residuals, indicating a linear fit is not
appropriate.
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2. set.seed(1)
x <- rnorm(100)
y <- 2 * x + rnorm(100)

a. summary(lm(y ~ x + 0))

Call:
lm(formula = y ~ x + 0)

Residuals:
Min 1Q Median 3Q Max

-1.9154 -0.6472 -0.1771 0.5056 2.3109

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x 1.9939 0.1065 18.73 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9586 on 99 degrees of freedom
Multiple R-squared: 0.7798, Adjusted R-squared: 0.7776
F-statistic: 350.7 on 1 and 99 DF, p-value: < 2.2e-16

Result is fairly close to what’s expected (2).

b. summary(lm(x ~ y + 0))

Call:
lm(formula = x ~ y + 0)

Residuals:
Min 1Q Median 3Q Max

-0.8699 -0.2368 0.1030 0.2858 0.8938

Coefficients:
Estimate Std. Error t value Pr(>|t|)

y 0.39111 0.02089 18.73 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4246 on 99 degrees of freedom
Multiple R-squared: 0.7798, Adjusted R-squared: 0.7776
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F-statistic: 350.7 on 1 and 99 DF, p-value: < 2.2e-16

Result is a bit far from what is expected (0.5), and it doesn’t land in its 95%
confidence interval.

c. The estimate in (a) is about 5 times the estimate in (b). The t-statistics, however,
are identical.

d. See:

t =
∑

i xiyi∑
j x2

j

×

√√√√ (n − 1)∑j x2
j∑

i(yi − xiβ̂)2

=
√

n − 1∑i xiyi∑
j x2

j

×

√√√√ ∑
j x2

j∑
i(yi − xiβ̂)2

=
√

n − 1∑i xiyi√∑
j x2

j

×
√

1∑
i(yi − xiβ̂)2

=
√

n − 1∑i xiyi√∑
j x2

j

×
√

1∑
i y2

i − 2yixiβ̂ + x2
i β̂2

=
√

n − 1∑i xiyi√∑
j x2

j

×
√√√√√ 1∑

i y2
i − 2yixi

∑
j

xjyj∑
k

x2
k

+ x2
i (
∑

j
xjyj∑

k
x2

k

)2

=
√

n − 1∑i xiyi√
(∑i y2

i )(∑j x2
j ) − 2(∑i xiyi)2 + (∑i xiyi)2

=
√

n − 1∑i xiyi√
(∑i y2

i )(∑j x2
j ) − (∑i xiyi)2

In R, this is written as

(sqrt(100 - 1) * sum(x * y)) / sqrt(sum(xˆ2) * sum(yˆ2) - sum(x * y)ˆ2)

[1] 18.72593

This returns the same value as the t-statistic.

e. Due to the symmetry of x and y, we find we have the same formula as above. Hence
the t-statistic is the same.

f. fit <- lm(y ~ x)
fit2 <- lm(x ~ y)
summary(fit)
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Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-1.8768 -0.6138 -0.1395 0.5394 2.3462

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.03769 0.09699 -0.389 0.698
x 1.99894 0.10773 18.556 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9628 on 98 degrees of freedom
Multiple R-squared: 0.7784, Adjusted R-squared: 0.7762
F-statistic: 344.3 on 1 and 98 DF, p-value: < 2.2e-16

summary(fit2)

Call:
lm(formula = x ~ y)

Residuals:
Min 1Q Median 3Q Max

-0.90848 -0.28101 0.06274 0.24570 0.85736

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03880 0.04266 0.91 0.365
y 0.38942 0.02099 18.56 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4249 on 98 degrees of freedom
Multiple R-squared: 0.7784, Adjusted R-squared: 0.7762
F-statistic: 344.3 on 1 and 98 DF, p-value: < 2.2e-16
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