Line / Plane of best fi **Linear Regression**

ACTL3142 & ACTL5110 Statistical Machine Learning for Risk and Actuarial Applications

Linear in X (or some function of

Disclaimer

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

Overview • Simple Linear Regression • Multiple Linear Regression • Linear model Selection

• Potential problems with Linear Regression

Reading

James et al (2021), Chapter 3, Chapter 6.1

Linear Regression

- A classical and easily applicable approach for supervised learning
- Useful tool for predicting a quantitative response Non categorical
- Many more advanced techniques can be seen as an extension of linear regression

Simple Linear Regression

Overview

- Output • Predict a quantitative response *Y* based on a single predictor variable *X*
- Approximately a linear relationship between *X* and *Y*

$$Y = \beta_0 + \beta_1 X + \epsilon$$

f(X)= Bot B,X

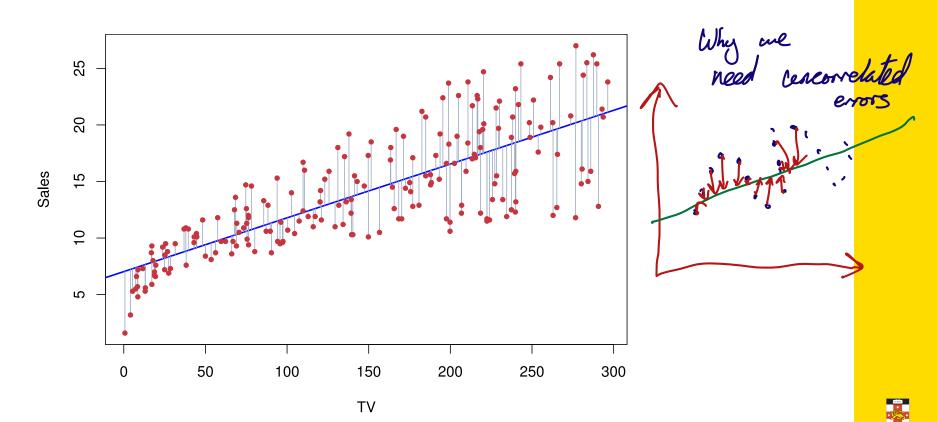
+ E

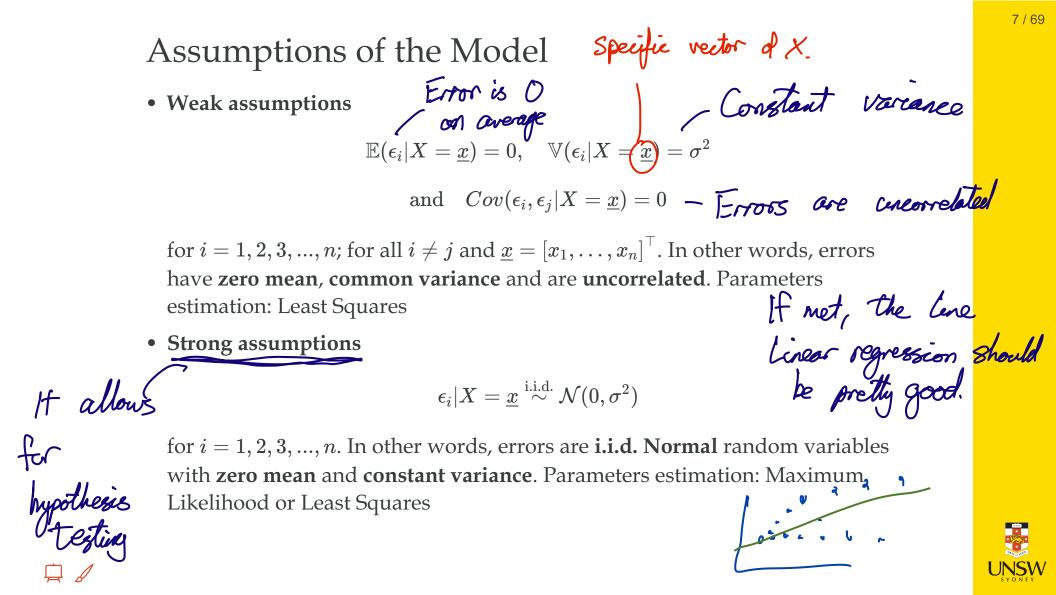
- Use (training) data to produce estimates $\hat{\beta}_0$ and $\hat{\beta}_1$
- Make predictions of Y_i (given $X = x_i$)

• Make predictions of
$$Y_i$$
 (given $X = x_i$)
 $F[Y] = \beta_0 + \beta_1 E[X] \longrightarrow \hat{y_i} = \hat{\beta}_0 + \hat{\beta}_1 x_i$
 $+ Ferror 0$
 $- Simple and easy to indestand
• X is assumed to be deterministic$

Advertising Example

 $extsf{sales} pprox eta_0 + eta_1 imes extsf{TV}$





Least Squares Estimates (LSE)

- Most common approach to estimating \hat{eta}_0 and \hat{eta}_1
- Y= βo+β,X+ε

"True" noodel is

• Minimise the residual sum of squares (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

• The least square coefficient estimates are (make sure you can derive these!)

Best

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}_{i})(y_{i} - \bar{y}_{i})}{\sum_{i=1}^{n} (x_{i} - \bar{x}_{i})^{2}} = \frac{S_{xy}}{S_{xx}}$$
 Side 67,
 $\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$ State 67,
Notations
where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$. See slide on S_{xy} , S_{xx} and sample
(co-)variances. Proof: See Lab questions.

8/69

Least Squares Estimates (LSE) - Properties

Under the **weak assumptions** we have **unbiased estimators**:

- $\mathbb{E}\left[\hat{\beta}_0|X=\underline{x}\right] = \beta_0$ and $\mathbb{E}\left[\hat{\beta}_1|X=\underline{x}\right] = \beta_1$. $\operatorname{Var}\left(\hat{z}_i \mid X=\underline{x}_i\right)$ An (unbiased) estimator of σ^2 is given by:

$$s^{2} = rac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{n-2} = rac{\sum_{i=1}^{n} \left(y_{i} - \left(\widehat{eta}_{0} + \widehat{eta}_{1} x_{i}
ight)
ight)^{2}}{n-2} = rac{ ext{RSS}}{n-2} = ext{RSE}^{2}$$

where $\hat{\epsilon}_i = y_i - \hat{y}_i = e_i$ are called the residuals and RSE the residual standard error.

Proof: See Lab questions.

Least Squares Estimates (LSE) - Uncertainty

Under the **weak assumptions** we have that the (co-)variance of the parameters is given by:

10/69

 $\begin{array}{c} \text{More} \\ \text{Var}\left(\widehat{\beta}_{0}|X=\underline{x}\right) = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}\right) = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}\right) \\ \text{confident in} \\ \text{estimate with} \\ \text{More data} \\ \text{War}\left(\widehat{\beta}_{1}|X=\underline{x}\right) = \frac{\sigma^{2}}{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}} = \frac{\sigma^{2}}{S_{xx}} = SE(\widehat{\beta}_{1})^{2} \\ \text{War}\left(\widehat{\beta}_{0},\widehat{\beta}_{1}|X=\underline{x}\right) = -\frac{\overline{x}\sigma^{2}}{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}} = -\frac{\overline{x}\sigma^{2}}{S_{xx}} \\ \text{Cov}\left(\widehat{\beta}_{0},\widehat{\beta}_{1}|X=\underline{x}\right) = -\frac{\overline{x}\sigma^{2}}{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}} = -\frac{\overline{x}\sigma^{2}}{S_{xx}} \\ \text{Since } S^{2} \\ \end{array}$ V Z=E[X] E[Y|X=3] **Proof**: See Lab questions. $=\sum_{i} \frac{x_{i}}{x_{i}}$ XiE X

Maximum Likelihood Estimates (MLE)

- In the regression model there are three parameters to estimate: β_0 , β_1 , and σ^2 .
- Under the **strong assumptions** (i.i.d Normal RV), the joint density of Y_1, Y_2, \ldots, Y_n is the product of their marginals (independent by assumption) so that the likelihood is: $Y_i = \beta_0 + \beta_i \varkappa_i + \varepsilon_i$?

$$\ell\left(\underline{y}; eta_0, eta_1, \sigma
ight) = - \, n \log\left(\sqrt{2\pi} \sigma
ight) - rac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \left(eta_0 + eta_1 x_i
ight)
ight)^2.$$

Proof: See Lab questions.

Lab questions. Under strong, you can Estimate Bo, Bi, O² by MLE. - Bo and Bi estimates by MLE or LS' are the same.

 $\mathcal{N}_{(0,\sigma^2)}$

Maximum Likelihood Estimates (MLE)

Partial derivatives set to zero give the following MLEs:

$$egin{aligned} \widehat{eta}_1 =& rac{\sum_{i=1}^n \left(x_i - \overline{x}
ight) \left(y_i - \overline{y}
ight)}{\sum_{i=1}^n \left(x_i - \overline{x}
ight)^2} = rac{S_{xy}}{S_{xx}}, \ \widehat{eta}_0 =& \overline{y} - \widehat{eta}_1 \overline{x}, \end{aligned}$$

and

$$\widehat{\sigma}_{ ext{MLE}}^2 = rac{1}{n}\sum_{i=1}^n \left(y_i - \left(\widehat{eta}_0 + \widehat{eta}_1 x_i
ight)
ight)^2.$$

- Note that the parameters β_0 and β_1 have the same estimators as that produced • However, the MLE $\hat{\sigma}^2$ is a biased estimator of σ^2 . • In practice, we use the unbiased variant s^2 (see slide). • In practice, we use the unbiased variant s^2 (see slide). • In practice, we use the unbiased variant s^2 (see slide). • In practice, we use the unbiased variant s^2 (see slide).

Assessing the Accuracy I

- How to assess the accuracy of the coefficient estimates? In particular, consider are - Ar the following questions:
 - What are the confidence intervals for β_0 and β_1 ?
 - How to test the null hypothesis that there is no relationship between *X*
- How to test if the influence of the exogeneous variable (X) on the endogenous variable (Y) is larger/smaller than some value?

For inference (e.g. confidence intervals, hypothesis tests), we need the strong assumptions!

Note

Assessing the Accuracy II

MSE_ · Checking

- How to assess the accuracy of the model?
- How to assess the accuracy of the predictions? In particular:
 - for the population regression line (i.e. mean response)?
 - for the actual value of the dependent variable (i.e. individual response)?

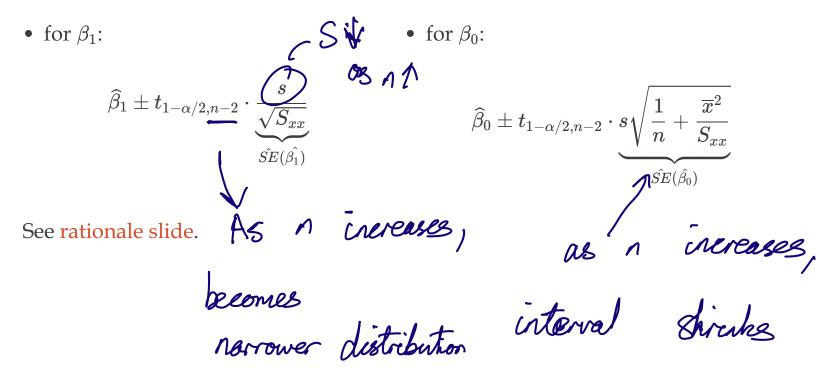
 $-Adj. R^2$

- Mallow - AIC - BIC

•R²

Assessing the Accuracy of the Coefficient Estimates - Confidence Intervals

Using the **strong assumptions**, a 100 $(1 - \alpha)$ % confidence interval (CI) for β_1 , and *resp*. for β_0 , are given by:



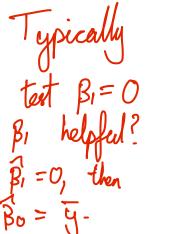
Assessing the Accuracy of the Coefficient Estimates - Inference on the slope

- When we want to test whether the exogenous variable has an influence on the endogenous variable or if the influence is larger/smaller than some value.
- For testing the hypothesis

$$t(\widehat{eta}_1) = rac{\widehat{eta}_1 - \widetilde{eta}_1}{\widehat{SE}(\widehat{eta}_1)} = rac{\widehat{eta}_1 - \widetilde{eta}_1}{ig(s / \sqrt{S_{xx}}ig)}$$

which has a t_{n-2} distribution under the H_0 (see rationale slide).

$$Y = f(X) + \varepsilon$$
$$= \beta_0 + \beta_1 X + \varepsilon$$



Assessing the Accuracy of the Coefficient Estimates - Inference on the slope

The decision rules under various alternative hypotheses are summarized below.

Decision Making Procedures for Testing $H_0: \beta_1 = \widetilde{\beta}_1$

Alternative <i>H</i> ₁	Reject H_0 in favor of H_1 if
$eta_1 eq \widetilde{eta}_1$	$\left t\left(\widehat{eta}_{1} ight) ight > t_{1-lpha/2,n-2}$
$eta_1 > \widetilde{eta}_1$	$t\left(\widehat{eta}_{1} ight)>t_{1-lpha,n-2}$
$eta_1 < \widetilde{eta}_1$	$t\left(\widehat{eta}_{1} ight)<-t_{1-lpha,n-2}$

To test whether the regressor variable is significant or not, it is equivalent to testing whether the slope is zero or not. Thus, test H_0 : $\beta_1 = 0$ against H_1 : $\beta_1 \neq 0$.

 \widehat{a}

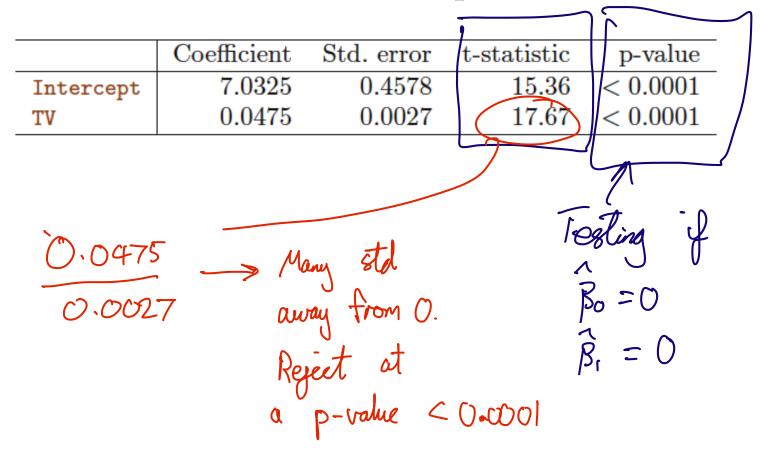
Assessing the Accuracy of the Coefficient Estimates - Inference on the intercept

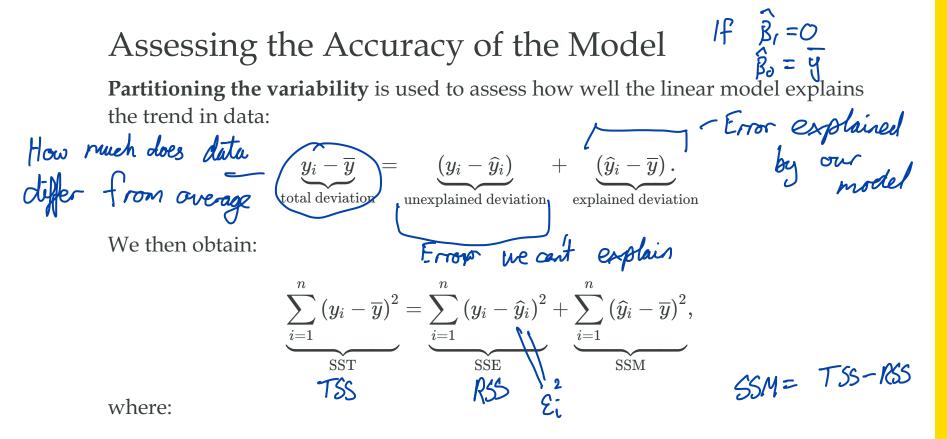
Similarly, for testing the null hypothesis $H_0: \beta_0 = \tilde{\beta}_0$ for some constant $\tilde{\beta}_0$, we use the test statistic:

$$t\left(\widehat{eta}_0
ight)=rac{\widehat{eta}_0-\widetilde{eta}_0}{\widehat{SE}(\widehat{eta}_0)}=rac{\widehat{eta}_0-\widetilde{eta}_0}{\left(s\sqrt{rac{1}{n}+rac{\overline{x}^2}{S_{xx}}}
ight)},$$

which has a t_{n-2} distribution under the H_0 (see rationale slide).

Assessing the Accuracy of the Coefficient Estimates - Advertising Example





- SST or TSS: total sum of squares;
- SSE or RSS: sum of squares error or **residual sum of squares**;
- SSM: **sum of squares model** (sometime called regression).
- **Proof**: See Lab questions

20/69

Assessing the Accuracy of the Model

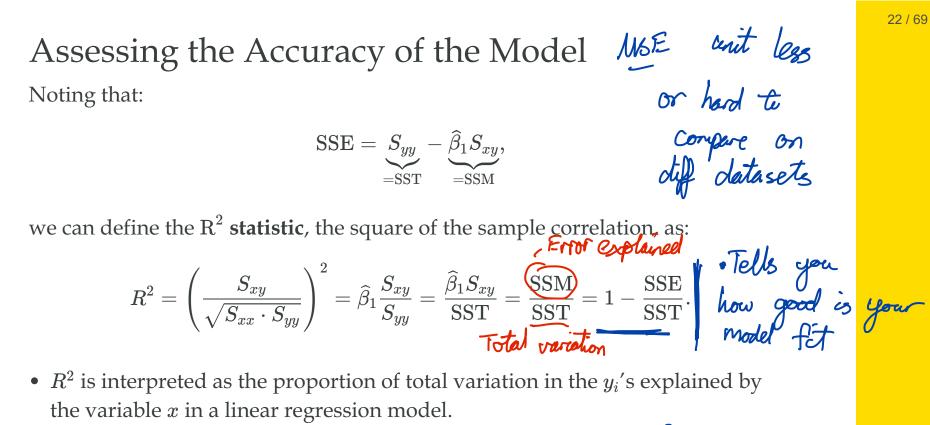
Interpret these sums of squares as follows:

- SST (or TSS) is the total variability in the absence of knowledge of the variable *X*;
- SSE (or RSS) is the total variability remaining after introducing the effect of *X*;
- SSM is the total variability "explained" because of knowledge of *X*.

This partitioning of the variability is used in ANOVA tables:

SourceSum of squaresDoFMean squareFRegression
$$SSM = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
 $DFM = 1$ $MSM = \frac{SSM}{DFM}$ $\frac{MSM}{MSE}$ Error $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ $DFE = n - 2$ $MSE = \frac{SSE}{DFE}$ Total $SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$ $DFT = n - 1$ $MST = \frac{SST}{DFT}$ Also allowsus to do FtestTesting if model R^2

₽ d



- R^2 takes on a value between 0 and 1.
- R^2 is also called **coefficient of determination**.

Proof: See Lab questions

 $\bigcirc \leqslant \mathbb{R}^2 \le 1$

 $R^2 = 1$

Assessing the Accuracy of the Predictions - Mean Response $Y = f(x) + \varepsilon = \beta_0 + \beta_1 x + \varepsilon$

Suppose $x = x_0$ is a specified value of the *out of sample* regressor variable and we want to predict the corresponding *Y* value associated with it. The **mean** of *Y* is:

$$\mathbb{E}[Y \mid x_0] = \mathbb{E}[eta_0 + eta_1 x \mid x = x_0]$$
 F(7) X= Xo
= $eta_0 + eta_1 x_0.$

Our (unbiased) estimator for this mean (also the fitted value of y_0) is: $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0.$ Predict $f(\chi)$

The variance of this estimator is:

$$\operatorname{Var}(\hat{y}_0) = \left(\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{S_{xx}}\right) \sigma^2 \not\cong \operatorname{SE}(\hat{y}_0)^2 = \mathcal{S}^2 \clubsuit$$
estions.

Proof: See Lab questions.

Assessing the Accuracy of the Predictions - Mean Response

Using the **strong assumptions**, the 100 $(1 - \alpha)$ % confidence interval for $\beta_0 + \beta_1 x_0$ (mean of *Y*) is:

$$\begin{split} \underbrace{\left(\widehat{\beta}_{0}+\widehat{\beta}_{1}x_{0}\right)}_{\widehat{y}_{0}} & \pm t_{1-\alpha/2,n-2} \times s\sqrt{\frac{1}{n}+\frac{\left(\overline{x}-x_{0}\right)^{2}}{S_{xx}}}, \\ \text{as we have} & \text{and} \\ \widehat{y}_{0} \sim \mathcal{N}(\beta_{0}+\beta_{1}x_{0},\mathrm{SE}(\widehat{y}_{0})^{2}) & \frac{\widehat{y}_{0}-(\beta_{0}+\beta_{1}x_{0})}{\mathrm{SE}(\widehat{y}_{0})} \sim t(n-2). \end{split}$$

Similar rationale to slide.

- Ignored variability from

Assessing the Accuracy of the Predictions -Individual response

A **prediction interval** is a confidence interval for the **actual value** of a *Y*_{*i*} (not for its mean $\beta_0 + \beta_1 x_i$). We base our prediction of Y_i (given $X = x_i$) on:

$$\widehat{y}_i = \widehat{eta}_0 + \widehat{eta}_1 x_i.$$

The error in our prediction is:

$$\boldsymbol{Y}_i - \boldsymbol{\widehat{y}}_i = \beta_0 + \beta_1 \boldsymbol{x}_i + \boldsymbol{\epsilon}_i - \boldsymbol{\widehat{y}}_i = \mathbb{E}[\boldsymbol{Y}|\boldsymbol{X} = \boldsymbol{x}_i] - \boldsymbol{\widehat{y}}_i + \boldsymbol{\epsilon}_i$$

with

$$\mathbb{E}\left[Y_{i} - \hat{y}_{i} | \underline{X} = \underline{x}, X = x_{i}\right] = 0, \text{ and}$$

$$\operatorname{Var}(Y_{i} - \hat{y}_{i} | \underline{X} = \underline{x}, X = x_{i}) = \sigma^{2}\left(1 + \frac{1}{n} + \frac{(\overline{x} - x_{i})^{2}}{S_{xx}}\right)$$
b questions.

Proof: See Lab

y=fx)+€

Here trying to predict

we

Assessing the Accuracy of the Predictions -Individual response

A $100(1 - \alpha)$ % **prediction interval** for Y_i , the value of Y at $X = x_i$, is given by:

$$rac{Y_i - \widehat{y}_i}{s\sqrt{1+rac{1}{n}+rac{(\overline{x}-x_i)^2}{S_{xx}}}} \sim t_{n-2}.$$

as

Multiple Linear Regression

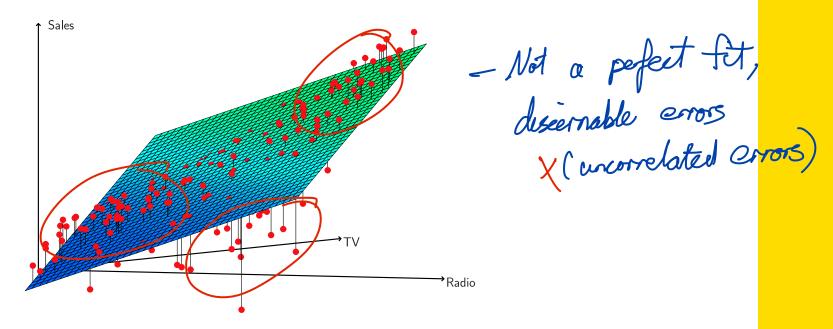
Overview

- Extend the simple linear regression model to accommodate multiple predictors X_1, X_2, \dots, X_p or the goal $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$
- β_j : the average effect on *Y* of a one unit increase in X_j , holding all other predictors fixed

~

Advertising Example

 $extsf{sales} pprox eta_0 + eta_1 imes extsf{TV} + eta_2 imes extsf{radio}$

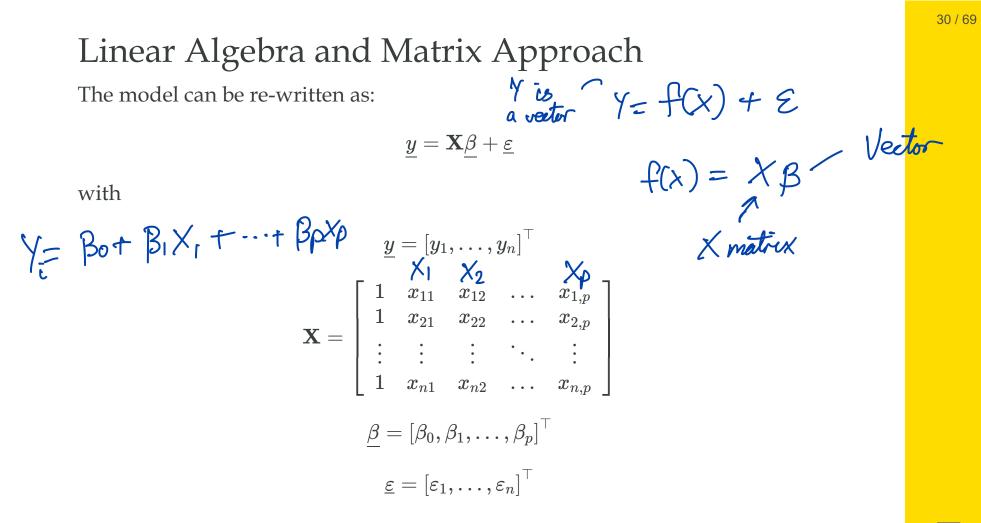


Qualitative predictors

Suppose a predictor is qualitative (e.g. 2 different levels) - how would you model/code this in a regression? What if there are more than 2 levels?

Y= Bo+Bix+E

X = Yes Code as 1 No Code as O X = Yes Nu 0 1 0



Note that the matrix **X** is of size $n \times p + 1$, the vectors \underline{y} , $\underline{\beta}$ and $\underline{\varepsilon}$ are column vectors.

Assumptions of the Model $Y = X \beta \neq \xi$ Weak Assumptions:

The error terms ε_i satisfy the following:

$$egin{aligned} \mathbb{E}[arepsilon_i | \mathbf{X} = \mathbf{x}] &= 0, & ext{ for } i = 1, 2, \dots, n; \ \mathrm{Var}(arepsilon_i | \mathbf{X} = \mathbf{x}) &= \sigma^2, & ext{ for } i = 1, 2, \dots, n; \ \mathrm{Cov}(arepsilon_i, arepsilon_j | \mathbf{X} = \mathbf{x}) &= 0, & ext{ for all } i
eq j. \end{aligned}$$

In words, the errors have **zero means, common variance**, and are **uncorrelated**. In matrix form, we have:

$$\mathbb{E}\left[\underline{\varepsilon}\right] = \underline{0}; \qquad \operatorname{Cov}\left(\underline{\varepsilon}\right) = \sigma^{2}\mathbf{I}_{n},$$

where I_n is a matrix of size $n \times n$ with ones on the diagonal and zeros on the offdiagonal elements.

Strong Assumptions: $\varepsilon_i | \mathbf{X} = \mathbf{x} \overset{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma^2).$

In words, errors are **i.i.d. normal** random variables with **zero mean** and **constant variance**.

as before, but extended for multivizate

Least Squares Estimates (LSE)

- Same least squares approach as in Simple Linear Regression
- Minimise the residuals sum of squared (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip} \right)^2 \text{ of }$$
$$= \left(\underbrace{y - \mathbf{X} \underline{\beta}}_{\text{Loss}} \right)^\top \left(\underbrace{y - \mathbf{X} \underline{\beta}}_{\text{Loss}} \right) = \sum_{i=1}^{n} \hat{\varepsilon}_i^2. \qquad \qquad \underbrace{\partial \text{Loss}}_{\text{B}} \left(\underbrace{\mathbf{X}^T \mathbf{X}}_{\text{B}} \right)^T \mathbf{X}^T \mathbf{y}$$

• If $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ exists, it can be shown that the solution is given by:

$$\widehat{\underline{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\underline{y}.$$
will result in a matrix w. O column linearly dependent
• The corresponding vector of fitted (or predicted) values is on the others.

$$\underline{\widehat{y}} = \mathbf{X}\underline{\widehat{\beta}}.$$

Least Squares Estimates (LSE) - Properties

Under the **weak assumptions** we have **unbiased estimators**:

1. The least squares estimators are unbiased: $\mathbb{E}[\widehat{\beta}] = \widehat{\beta}$. $\mathbb{E}[B] = \mathbb{E}[XX] X Y$ 2. The variance-covariance matrix of the least squares estimators is: $\operatorname{Var}(\widehat{\beta}) = \int_{-\infty}^{-\infty} \mathbb{E}[B] = \mathbb{E}[XX] X \mathbb{E}[B]$ $\sigma^2 \cdot \left(\mathbf{X}^{ op} \mathbf{X}
ight)^{-1}$.

3. An unbiased estimator of σ^2 is:

$$s^2 = rac{1}{n-p-1} \left(\underline{y} - \widehat{\underline{y}}
ight)^ op \left(\underline{y} - \widehat{\underline{y}}
ight) = rac{ ext{RSS}}{n-p-1},$$

p + 1 is the total number of parameters estimated.

4. Under the **strong assumptions**, each $\hat{\beta}_k$ is normally distributed. See details in see slide.

Test the Relationship Between the Response and Predictors - is our model better than no model

$$H_0:eta_1=\dots=eta_p=0$$

 H_a : at least one β_i is non-zero

- F-statistic = $\frac{(TSS-RSS)/p}{RSS/(n-n-1)}$ From ANOVA table
- Question: Given the individual p-values for each variable, why do we need to + PT-+ · O Q=N look at the overall F-statistics?

Analysis of variance (ANOVA)

The sums of squares are interpreted as follows:

- SST (or TSS) is the total variability in the absence of knowledge of the variables X₁,..., X_p;
- SSE (or RSS) is the total variability remaining after introducing the effect of X₁,..., X_p;
- SSM is the total variability "explained" because of knowledge of X_1, \ldots, X_p .

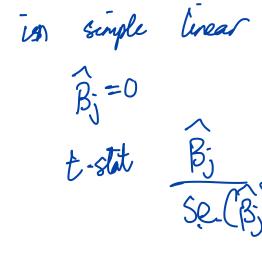
ANOVA

This partitioning of the variability is used in ANOVA tables:

Source	Sum of squares	DoF	Mean square	F	p-value
Regression	$ ext{SSM} = \sum_{i=1}^n (\hat{y_i} - ar{y})^2$	$\mathrm{DFM} = p$	$\mathrm{MSM} = rac{\mathrm{SSM}}{\mathrm{DFM}}$	MSM MSE	$1-F_{ m DFM,DFE}(F)$
Error	$ ext{SSE} = \sum_{i=1}^n (y_i - \hat{y_i})^2$	DFE = n - p - 1	$ ext{MSE} = rac{ ext{SSE}}{ ext{DFE}}$	$\overline{\gamma}$	
Total	$ ext{SST} = \sum_{i=1}^n (y_i - ar{y})^2$	DFT = n - 1	$MST = \frac{SST}{DFT}$		
				1	1 -
				Toste	of model is
					U ·
				Aon	- 7050.

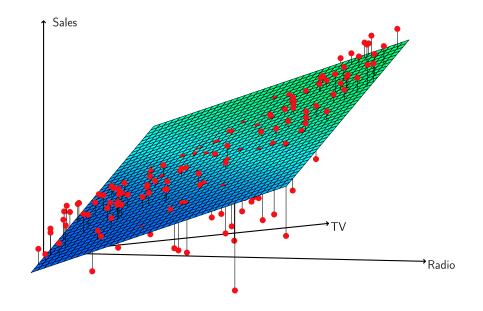
Model Fit and Predictions

- Measure model fit (similar to the simple linear regression)
 - Residual standard error (RSE)
 - R^2
- Uncertainties associated with the prediction
 - $\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_p$ are estimates \frown Some as before ι
 - linear model is an approximation
 - random error ϵ

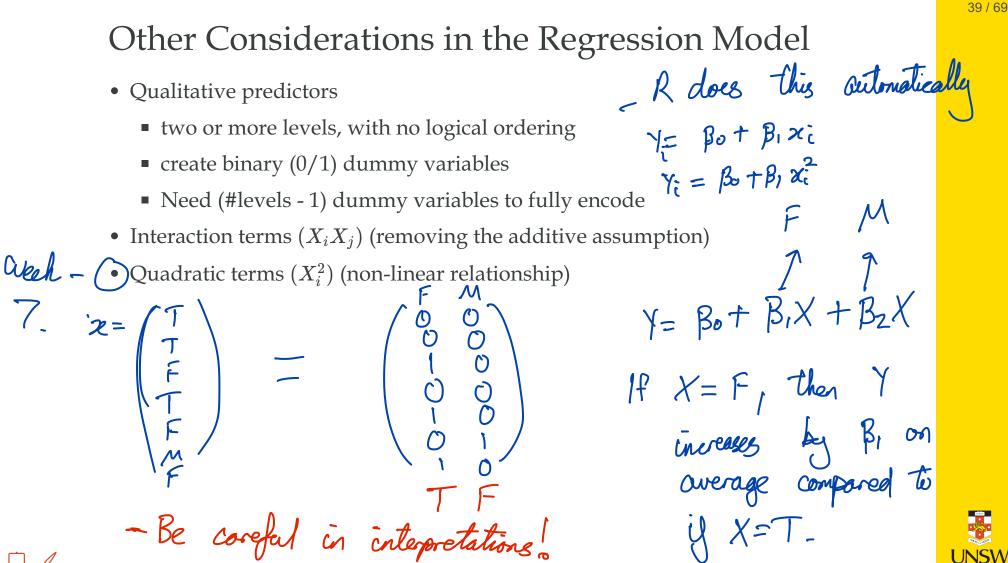


Advertising Example (continued)

Linear regression fit using TV and Radio:

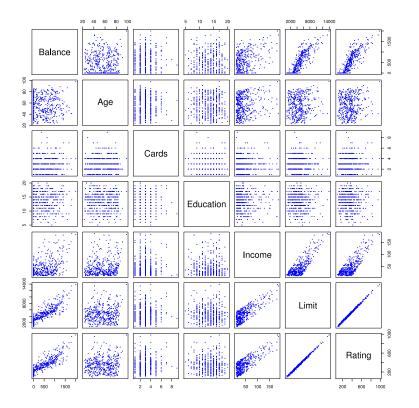


\square



Linear model selection

The **credit** dataset



Qualitative covariates: own, student, status, region

Linear Model selection

- Various approaches we will focus on
 - Subset selection
 - Indirect methods
 - Shrinkage (also called Regularization) (Later in the course)
 - Dimension Reduction (Later in the course)

If Xi are quantitative If Xi increases by 1, (others fixed) then: Yi crereases by Bi on average

Y = Bot Bix, T. .. + Bpxp.

Subset selection

- The classic approach is subset selection
- Standard approaches include
 - Best subset
 - Forward stepwise
 - Backwards stepwise
 - Hybrid stepwise

MSE always improve R² when p increases

Best subset selection

Consider a linear model with n observations and p potential predictors:

$$Y=eta_0+eta_1X_1+eta_2X_2+\dots+eta_pX_p$$

Algorithm:

- Consider the models with 0 predictors, and call this \mathcal{M}_0 . This is the null model
- Consider all models with 1 predictor, pick the best fit, and call this \mathcal{M}_1
- ...
- Consider the model with p predictor, and call this \mathcal{M}_p . This is the full model
- Pick the best fit of $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$

Best subset selection - behaviour

- Considers all possible models, given the predictors
- Optimal model \mathcal{M}_k sets p k parameters to 0, the rest are found using the normal fitting technique
- Picks the best of all possible models, given selection criteria
- Very computationally expensive. Calculates:

$$\sum_{k=0}^{p} {p \choose k} = 2^{p} \text{ models}$$

$$- \bigvee_{k=0}^{p} \bigotimes_{k=0}^{p} \bigotimes_{k=0}^{p} \sum_{k=0}^{p} p \otimes_{k=0}^{p} p \otimes_{k=$$

Stepwise Example: Forward stepwise selection Algorithm:

• Start with the null model \mathcal{M}_0

Improves your metric the most

- Consider the *p* models with 1 predictor, pick the best, and call this \mathcal{M}_1
- Extend M_1 with one of the p-1 remaining predictors. Pick the best, and call this M_2
- . . .
- End with the full model \mathcal{M}_p
- Pick the best fit of $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_p$

Stepwise subset selection - behaviour

- Considers a much smaller set of models, but the models are generally good fits
- Far less computationally expensive. Considers only:

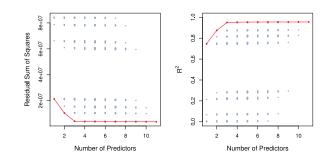
- Like best-subset, sets excluded predictor's parameters to 0
- Backward and forward selection give similar, but possibly different models
- Assumes each "best model" with *n* predictors is a proper subset of the one with size n + 1
 - In other words, it only looks one step ahead at a time
- Hybrid approaches exist, adding some variables, but also removing variables at each step

Example: Best subset and forward selection on *Credit* data

# Variables	Best subset	Forward stepwise	
1	rating	rating	
2	rating, income	rating, income	
3	rating, income, student	rating, income, student	
4	4 cards, income, student, limit rating, income, stud		

How to determine the "best" model

- Need a metric to compare different models
- R^2 can give misleading results as models with more parameters always have a higher R^2 on the training set:



RSS and R^2 for each possible model containing a subset of the ten predictors in the Credit data set.

- Want low test error:
 - Indirect: estimate test error by adjusting the training error metric due to bias from overfitting
 - Direct: e.g. cross-validation, validation set

Indirect methods

1. C_p with d predictors:

 $\frac{1}{n}(\mathrm{RSS}+2d\hat{\sigma}^2)$ penalty on # predictors

• Unbiased estimate of test MSE if $\hat{\sigma}^2$ is an unbiased estimate of σ^2

Mallow Cp

2. Akaike information criteria (AIC) with *d* predictors:

$$\frac{1}{n}(\text{RSS} + 2d\hat{\sigma}^2)$$
 - peralty

• Proportional to C_p for least squares, so gives the same results

Indirect methods cont.

3. Bayesian information criteria (BIC) with *d* predictors

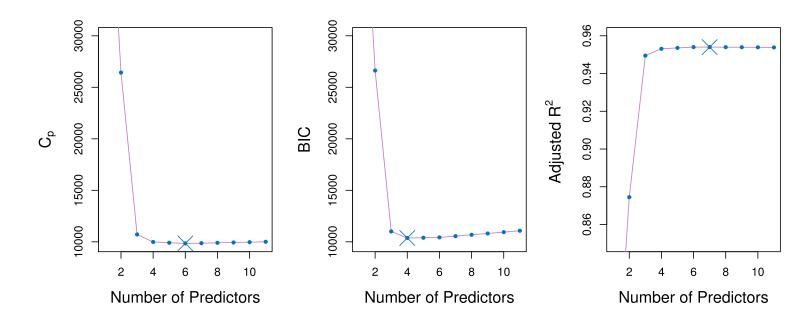
 $\frac{1}{n}(\mathrm{RSS} + \log(n)\,d\hat{\sigma}^2)$

- $\log(n) > 2$ for n > 7, so this is a much heavier penalty
- 4. Adjusted R^2 with *d* predictors

$$1-rac{\mathrm{RSS}/(n-d-1)}{\mathrm{TSS}/(n-1)}$$

- R² with penalty Adj. R² can be negative • Decreases in RSS from adding parameters are offset by the increase in 1/(n-d-1)
- Popular and intuitive, but theoretical backing not as strong as the other measures

How to determine the "best" model - Credit dataset



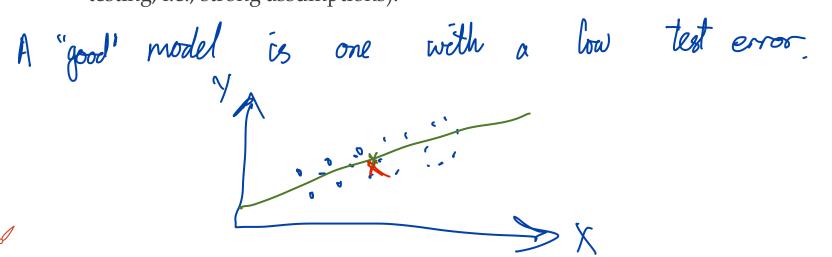
Potential problems with Linear Regression

51/69

Potential Problems/Concerns

To apply linear regression properly:

- The relationship between the predictors and response are linear and additive (i.e. effects of the covariates must be additive);
- Homoskedastic (constant) variance;
- Errors must be independent of the explanatory variables with mean zero (weak assumptions);
- Errors must be Normally distributed, and hence, symmetric (only in case of testing, i.e., strong assumptions).



Potential Problems/Concerns

- 1. Non-linearity of the response-predictor relationships
- 2. Correlation of error terms
- 3. Non-constant variance of error terms
- 4. Outliers
- 5. High-leverage points
- 6. Collinearity
- 7. Confounding effect (correlation does not imply causality!)

1. Non-linearities

20

ß

9

ß

0

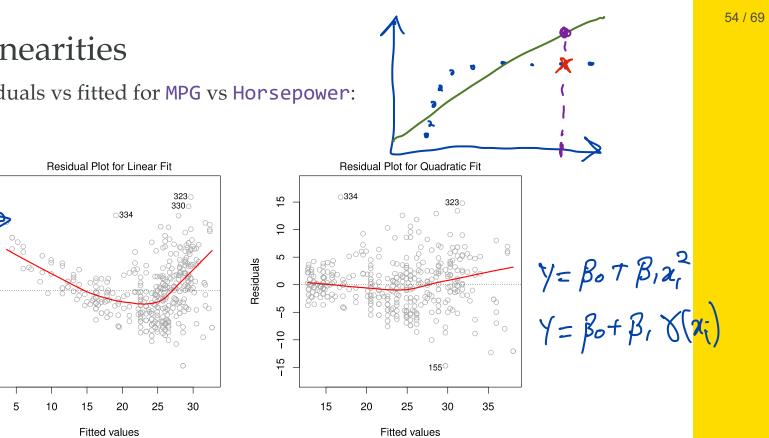
Ч

-10

-15

Residuals

Example: residuals vs fitted for MPG vs Horsepower:



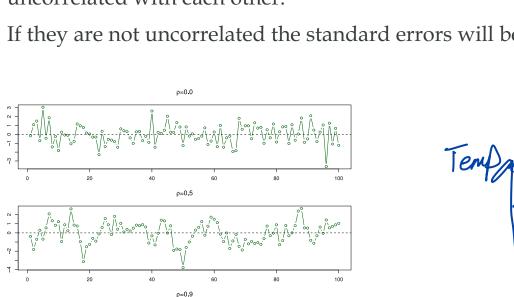
LHS is a linear model. RHS is a quadratic model.

Quadratic model removes much of the pattern - we look at these in more detail later.

 $Y = \beta_0 \tau \beta_1 \varkappa_1$

20

Observation



2. Correlations in the Error terms

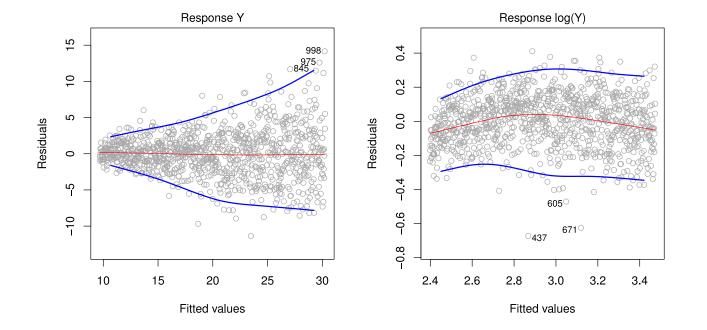
- 2. Correlations in the Error terms The assumption in the regression model is that the error terms are to work on time uncorrelated with each other.
- If they are not uncorrelated the standard errors will be incorrect.

have not on undelying

55 / 69

3. Non-constant error terms

The following are two regression outputs vs Y (LHS) and lnY (RHS)

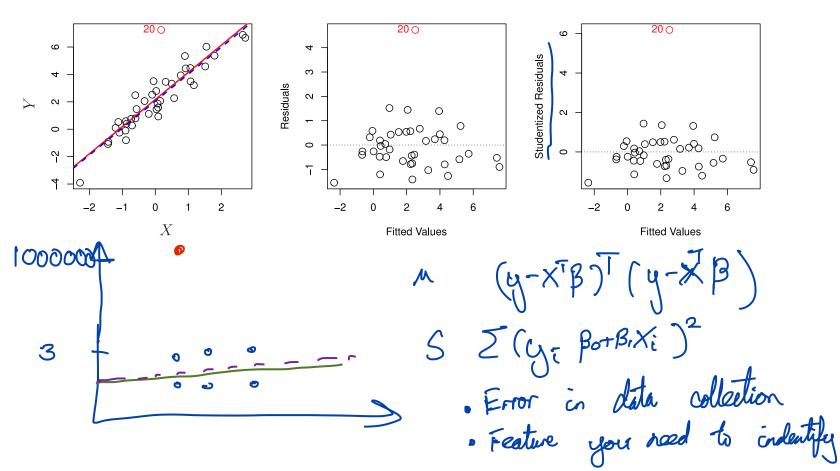


In this example log transformation removed much of the heteroscedasticity.

56 / 69

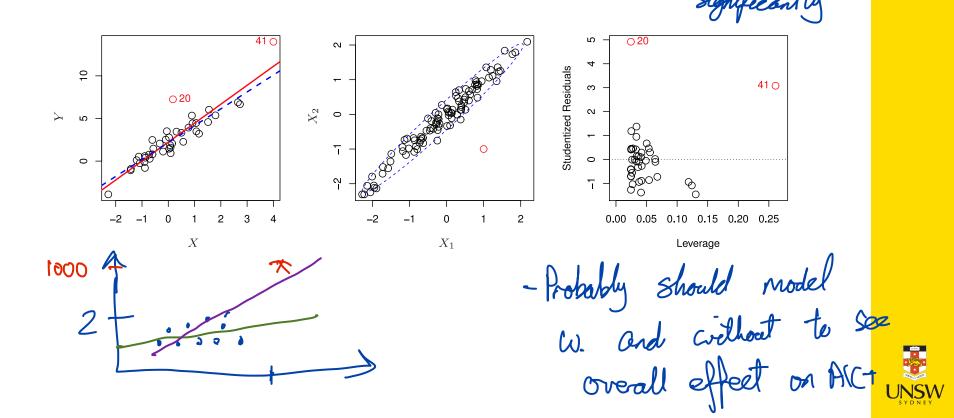
4. Ouliers

Reidual S.P. NO



5. High-leverage points

The following compares the fitted line with (RED) and without (BLUE) observation 41 fitted. - Points that influence (ine / plane



High-leverage points

• Have unusual predictor values, causing the regression line to be dragged towards them $\vec{q} = \frac{1}{x(x^T x)} x^T q$

 $\hat{p} = (x^T x)^T x^T y$

- A few points can significantly affect the estimated regression line
- Compute the leverage using the hat matrix:

$$H = \underbrace{X(X^T X)^{-1} X^T}_{\text{The hat matrix pats a hat on } \mathcal{C}}_{\text{The hat matrix pats a hat on } \mathcal{C}}$$

• Note that

$$\hat{Y_i} = \sum_{j=1}^n h_{ij}Y_j = h_{ii}Y_i + \sum_{j
eq i}^n h_{ij}Y_j$$

so each prediction is a linear function of all observations, and $h_{ii} = [H]_{ii}$ is the weight of observation *i* on its own prediction

• If $h_{ii} > 2(p+1)/n/$ the predictor can be considered as having a high leverage his is closer to 1, then it is high leverage.

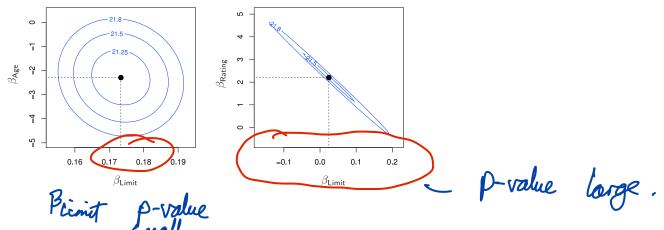
6. Collinearity

- Two or more predictor values are closely related to each other
- Reduces the accuracy of the regression by increasing the set of plausible coefficient values False conclusions on $\hat{\beta}_i = O$ Tests
- In effect, the causes SE of the beta coefficients to grow.
- Correlation can indicate one-to-one (linear) collinearity

XX is not full rank, means (X'X) does not exert $\hat{y} = (X^T X)^T X^T y$ - If factors are not coded properly then XTX will not be full rank

 $\chi = \begin{pmatrix} r & \cdot & \cdot \\ r & \cdot & \cdot \\ r & \cdot & \cdot \end{pmatrix}$

Collinearity makes optimisation harder



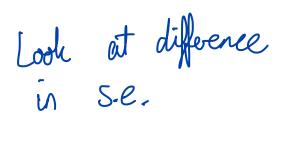
- Contour plots of the values as a function of the predictors. Credit dataset used.
- Left: balance regressed onto age and limit. Predictors have low collinearity
- Right: balance regressed onto rating and limit. Predictors have high collinearity
- Black: coefficient estimate

Multicollinearity

Use variance inflation factor

$$ext{VIF}(\hat{eta}_j) = rac{1}{1-R_{X_j|X_{-j}}^2}$$

- $R_{X_j|X_{-j}}^2$ is the R^2 from X_j being regressed onto all other predictors Minimum 1, higher is worse (> 5 or 10 is considered bich)
- Minimum 1, higher is worse (> 5 or 10 is considered high)



7. Confounding effects

- But what about confounding variables? Be careful, correlation does not imply causality!¹
- *C* is a **confounder** (confounding variable) of the relation between *X* and *Y* if:
 - *C* influences *X* and *C* influences *Y*,
 - but *X* does not influence *Y* (directly).

1. Check this website on spurious correlations.

Temperature/ # people at beach.

Confounding effects

- The predictor variable *X* would have an indirect influence on the dependent variable *Y*.
 - Example: Age ⇒ Experience ⇒ Probability of car accident. If experience can not be measured, age can be a proxy for experience.
- The predictor variable *X* would have no direct influence on dependent variable *Y*.
 - Example: Becoming older does not make you a better driver.
- Hence, a predictor variable works as a predictor, but action taken on the predictor itself will have no effect.

- Be careful with interpretation if you a confounding effect is present! believe

Confounding effects

How to correctly use/don't use confounding variables?

- If a confounding variable is observable: add the confounding variable.
- If a confounding variable is unobservable: be careful with interpretation!

So what's next

Generalisations of the Linear Model

In much of the rest of this course, we discuss methods that expand the scope of linear models and how they are fit:

(Binery). Classification problems: logistic regression Will it rais tomorrow?

- *Non-normality:* Generalised Linear Model
- *Non-linearity:* splines and generalized additive models; KNN, tree-based methods Week 7
- *Regularised fitting:* Ridge regression and lasso
- Non-parametric: Tree-based methods, bagging, random forests and boosting, Week 9/10. KNN (these also capture non-linearities)

Appendices

NSW

Appendix: Sum of squares

Recall from ACTL2131/ACTL5101, we have the following sum of squares:

$$egin{aligned} S_{xx} &= \sum_{i=1}^n (x_i - \overline{x})^2 & \implies s_x^2 = rac{S_{xx}}{n-1} \ S_{yy} &= \sum_{i=1}^n (y_i - \overline{y})^2 & \implies s_y^2 = rac{S_{yy}}{n-1} \ S_{xy} &= \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \implies s_{xy} = rac{S_{xy}}{n-1}, \end{aligned}$$

Here $s_{x'}^2$, s_y^2 (and s_{xy}) denote sample (co-)variance.

Appendix: CI for β_1 and β_0

Rationale for β_1 : Recall that $\hat{\beta}_1$ is unbiased and $Var(\hat{\beta}_1) = \sigma^2 / S_{xx}$. However σ^2 is usually unknown, and estimated by s^2 so, under the **strong assumptions**, we have:

$$rac{\widehat{eta}_1-eta_1}{s/\sqrt{S_{xx}}}=rac{\widehat{eta}_1-eta_1}{\sigma/\sqrt{S_{xx}}}ig/rac{\sqrt{rac{(n-2)\cdot s^2}{\sigma^2}}}{\sqrt{\chi^2_{n-2}/(n-2)}}\sim t_{n-2}$$

as
$$\epsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$
 then $\frac{(n-2)\cdot s^2}{\sigma^2} = \frac{\sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 \cdot x_i)^2}{\sigma^2} \sim \chi^2_{n-2}$.

Note: Why do we lose two degrees of freedom? Because we estimated two parameters!

Similar rationale for β_0 .

Appendix: Statistical Properties of the Least Squares Estimates

4. Under the strong assumptions of normality each component $\hat{\beta}_k$ is normally distributed with mean and variance

$$\mathbb{E}[\widehat{eta}_k] = eta_k, \quad \mathrm{Var}(\widehat{eta}_k) = \sigma^2 \cdot c_{kk},$$

and covariance between $\hat{\beta}_k$ and $\hat{\beta}_l$:

$$\operatorname{Cov}(\widehat{eta}_k,\widehat{eta}_l)=\sigma^2\cdot c_{kl},$$

where c_{kk} is the $(k + 1)^{\text{th}}$ diagonal entry of the matrix $\mathbf{C} = (\mathbf{X}^{\top} \mathbf{X})^{-1}$. The standard error of $\hat{\beta}_k$ is estimated using $\operatorname{se}(\hat{\beta}_k) = s \sqrt{c_{kk}}$.

