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Linear Regression

P 104@ e Linear model Selection

e Potential problems with Linear Regression

Q Reading

James et al (2021), Chapter 3, Chapter 6.1

s

3/69




s

Linear Regression

* A classical and easily applicable approach for supervised learning
 Useful tool for predicting a quantitative response — /Ua’)

* Many more advanced techniques can be seen as an extension of linear
regression
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Overview ,y; 100(\%1; z
Ol

e Predict a quantitative response Y based on a single predictor variable X

e Approximately a linear relationship between X and Y

Y=fr B+ FO0= Bt BX

e Use (training) data to produce estimates 5y and 5

e Make predictions of Y; (given X = z;) )( ,
5 O -o&m

Y ﬁfr/ngD(J "—*9§¢:Bo+31$i
ARAK hore.

X 15 aswed b le bt
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Advertising Example

sales ~ By + 1 X TV
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Assumptions of the Model SP%'(F‘ vec™ & X
e Weak assumptions Eﬂ"tﬂ‘ 05 0

E(g| X =2) =0, V(X = o
and Couv(ei, 6| X =2) =0 — Tpss dre Ceazorredilid
fori =1,2,3,...,n; forall i # j and z = [x1, ... ,wn]T. In other words, errors

have zero mean, common variance and are uncorrelated. Parameters

estimation: Least Squares -F Mg]‘ Tho A,\_Q
¢ Strong assumptions /%/%écm M
# alok lX =2 F N0, ke et o

'?OIA forz=1,2,3,...,n. In other words, errors are i.i.d. Normal random variables
. with zero mean and constant variance. Parameters estimation: Maxmnum,l .
W% Likelihood or Least Squares v

s
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Least Squares Estimates (LSE) Tewe” ool iz

¢ Most common approach to estimating 3, and ; )[_.__ E” o+ /Q, X+ &

e Minimise the residual sum of squares j

RSS = Z(yi — Z( yi — Bo — 3196@')2

l 1=1 ‘ i=1

* The least square coefficient estimates are (make sure you can derive these!)

BM B Z:L 1(2"@ — %) (yi — ¥:) _ Szy

— Z;)?

> i (@i Saa
Oilinales b7 fra Sl 67,
. ﬂofaz;ug

i 1 yandZ = > 1 z;. See slide on S, S;, and sample
(co- )Varlances Proof: See Lab questions.

LS Demo (OW%e
koot -

where § = 1



file:///C:/Users/Patrick/Dropbox/Lecturing/ACTL3142/ACTL3142-Shared/ACTL3142-Slides/docs/M2-Linear-Regression/linear-regression-demo.html
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Least Squares Estimates (LSE) - Properties

Under the weak assumptions we have unbiased estimators:

g [30|X:4 —fB and E [Bl\ng] = B UN[EE IX: x&)

* An (unbiased) estimator @ given by:

o %’:%12@22 _ > i (yi —n<;§02+ 31331'))2 _ Tf{?Sz _ RSE?

where ¢; = y; — §; = e; are called the residuals and RSE the residual standard
error.

Proof: See Lab questions.




Least Squares Estimates (LSE) - Uncertainty

Under the weak assumptions we have that the (co-)variance of the parameters
is given by:

More Ve (Bolx =) =2 (:L * z;’;l(i,. . f)2) = (i i §>
I e A
- with (ix = z) - (,2_ 7 spiay H n7\, Vor (BN

Mere dﬂa _ _ 2
Cov (B BulX =) = - zT;’ 7)? ‘Z*U \—/M &M/

s S
Proof: See Lab questions. ’ X,; Bj
- Z %t; X-c 6 (x_; -
s

SSSSSS
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Maximum Likelihood Estimates (MLE)

 In the regression model there are three parameters to estimate: 3y, 51, and o2,

e Under the strong assumptions (i.i.d Normal RV), the joint density of
Y1,Ys,...,Y, is the product of their marginals (independent by assumption)

so that the likelihood is: >/ — Bo'r B' x: + &
L

¢ (y; Bo, B1,0) = —nlog (\/%0) _Ti_g (i — (Bo + Buzi))”. N};og_)
i=1 /

Proof: See Lab questions. W 365@ / ?@u 18>
W [30/ ,B',/ o* Aj MLE .
— R od B oty by MEor (S aeth
Sanme .
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Maximum Likelihood Estimates (MLE)

Partial derivatives set to zero give the following MLEs:

Bl _ Z?:l (z; — ) (i — ¥) _ Szy
Z?:l (z: — 5)2 Sax’

BO :y o Blfa

and

n

e = %Z (yz — (Bo + Blwi))2-

1=1

e Note that the parameters 5, and 8; have the same estimators as that produced
T — ~

from Least Squares. 1Sine (5 M{} MLE ove ﬂe,
e However, the MLE 2 is a biased estimator of aj . Shime, W& MoE OF leses

e In practice, we use the unbiased variant s> (see slide). Ot The Szﬂ’ﬂ W



iPad


13/69

Assessing the Accuracy I

* How to assess the accuracy of the coefficient estimates? In particular, consider

the following questions: /@ﬂ‘— 9
hat are the confidence intervals for 50 and 31? ' —HDM &

» How to test the null hypothesis that there is no relationship between X
and Y?
i

D * How to test if the influence of the exogeneous variable (X) on the
endogenous variable (Y') is larger/smaller than some value?

@ Note
For inference (e.g. confidence intervals, hypothesis tests), we need the strong assumEtions!

s
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Assessing the Accuracy I CA@J@? MSE

* How to assess the accuracy of the model?
* How to assess the accuracy of the predictions? In particular:
= for the population regression line (i.e. mean response)?

= for the actual value of the dependent variable (i.e. individual response)?
RZ
6
B Maﬂow ( A - % 'S
- A

- BLC

14 /69
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Assessing the Accuracy of the Coefficient
Estimates - Confidence Intervals

Using the strong assumptions, a 100 (1 — ) % confidence interval (CI) for g,
and resp. for By, are given by:

e for fi: - S \{(‘ e for fy:
v (Dt
B1Eti_a2n—2- ~ 1z
_— See B P -
i BoEtti_a/on2-$ - + S

SE(f1) ~ ~~ o
&/ /SE(ﬁo)

See rationale slide. P\g N nereasss )
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope

e When we want to test whether the exogenous variable has an influence on the
endogenous variable or if the influence is larger/smaller than some value.

 For testing the hypothesis

Hy:B=5 vs Hy:B#PB /Skl%c W

for some constant 3;, we use the test statistic: ‘(‘G‘F )(B /

5 By — 51_ B — B
A = SEB)  (s/vSe) M

which has a t,,_» distribution under the Hj (see rationale slide). W ;2’

V= foo)+s ~b b

_[{'
0/ - Fo’f erT 2 /BFO"%'
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope

The decision rules under various alternative hypotheses are summarized below.

Decision Making Procedures for Testing Hy : 8, = /3, %
Alternative H; Reject Hj in favor of H; if /'\ Nﬁ”’g
B1 # 31 )t (B}) ’ > t1_a/2,n-2 ’ﬂ/,i\ll,:\

B > B t (31) > t1-an-2 ‘
B < B t (31) < —t1—an-2

To test whether the regressor variable is significant or not, it is equivalent to
testing whether the slope is zero or not. Thus, tesgainst H,: 3, #

/

) M?AW

VVVVVV
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the intercept

Similarly, for testing the null hypothesis Hy : 5y = Bo for some constant BO, we
use the test statistic:

t(B):BO_BOZ 30—30
SEG) (/14 2)

which has a t,,_» distribution under the Hj (see rationale slide).

18 /69
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Assessing the Accuracy of the Coefficient
Estimates - Advertising Example

e —

)
Coefficient Std. error [t-statistic

Intercept 7.0325 0.4578 15.36
TV 0.0475 0.0027 17.

)07 W«A'FMO E:O
Resect  of B =0
a%:itm £ 00O

19/69
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. =0
Assessing the Accuracy of the Model I¥ éz’ -q
y =
Partitioning the variability is used to assess how well the linear model explains
the trend in data:

— -« Erroc WW

ow Nuch dbes o

f A&Zh, +  (5i—Y). éﬂ iy
N ——’

d’%f- ‘P/ZTM 01/{;% total deviation unexplamed deviationy  explained deviation

[ .
We then obtain: ey e a,.;f' W
(i —9)° =D (wi — 9:)" +
=1 .= W\ = y
SST SSE \ SSM _
where:

e SST or TSS: total sum of squares;

e SSE or RSS: sum of squares error or residual sum of squares;

e SSM: sum of squares model (sometime called regression).

s

Proof: See Lab questions
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Assessing the Accuracy of the Model

Interpret these sums of squares as follows:

e SST (or TSS) is the total variability in the absence of knowledge of the variable
X;

e SSE (or RSS) is the total variability remaining after introducing the effect of X;
e SSM is the total variability “explained” because of knowledge of X.

This partitioning of the variability is used in ANOVA tables:

Source Sum of squares DoF Mean square F
Regression SSM =" (§;—y)>? DFM=1 MSM= 2 Y59
Error SSE =" (y; —9:)> DFE=n-2 MSE= 3£
Total SST=>",(y;—y)> DFT=n-1 MST= 3L
\%kz{mu&tdolfé*e#’—é‘e%‘ﬁw
w o~ 2o
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Assessing the Accuracy of the Model ME il gy

Noting that: o W +
SSE = S,, — 8154y,

on
:s\s/T =SSM 0&9 Ow%

we can define the R? statistic, the square of the sample ﬁﬂ}fo?elatlozz ai

2 'Ie&
g Su ) _5Sx_B xy:@_l_ss_E
/Sre - S,y Sy  SST ~ SST SST yﬂf
T&&JWJL,.

e R?is interpreted as the proportion of total variation in the y;’s explained by
the variable z in a linear regression model.

e R? takes on a value between 0 and 1. QRS RZ < ]

e |

e R?is also called coefficient of determination.

Proof: See Lab questions



iPad

iPad

iPad

iPad

iPad

iPad


s

23/69

Assessing the Accuracy of the Predictions - Mean
Response Y= F)+s = prpiate

Suppose x = z is a specified value of the out of sample regressor variable and we
want to predict the corresponding Y value associated with it. The mean of Y is:

E[Y | 20] = E[fo + fiz | & = m) AAREEZ
= Bo + B1zo. / J

Our (unbiased) estimator for this mean (also the fitted value of yy) is:
S

fo = Bo + Bio. Pre@&,o‘f' {l(‘e()

The variance of this estimator is:

Var(gy) = (1 " M) ot #EG) = 57

n Sz
[ -
Proof: See Lab questions. She
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Assessing the Accuracy of the Predictions - Mean
Response

Using the strong assumptions, the 100 (1 — &) % confidence interval for 5y +
Bizo (mean of Y) is:

as we have

Jo ~ N (Bo + B1zo, SE(90)?) (50 + 515170)

~t(n — 2).

Similar rationale to slide. - IW WM;& '_D“U‘M
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Assessing the Accuracy of the Predictions -
Individual response

A prediction interval is a confidence interval for the actual value of a Y; (not for
its mean Sy + B1x;). We base our prediction of Y; (given X = z;) on:

- @2 o o predit
Y; = Bo + Brzi. hee
The error in our prediction is: \/ ) ﬂUT { C L)
— Dlj \pr.c
Yi—gi=p+biwi+e&— 7 =EY|X =z -7 +e.
with
E[Y; - X = z,X = 2;] = 0, and

- o o o 1 (f — (L‘i)2
Var(Yz—yilg,sz)a@n—i— S )
I

Proof: See Lab questions.
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Assessing the Accuracy of the Predictions -
Individual response
A 100(1 — ) % prediction interval for Y;, the value of Y at X = «;, is given by:

ﬂ0+ﬂlxiitl—a/2,n—2 .S \/]_+ 4+ ( )
N’

~

Yi

wcﬂ/‘due’zm‘z,\,j @Gp

! — + & —2)° )), and

n Sze
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Overview

* Extend the simple linear regression model to accommodate multiple

dict y
predictors 1 X'/ Xl/ ) _'/);) .

Y:ﬁ0+ﬁ1X1—|—52X2—|—"'—|—ﬁpo—|—€

* B;: the average effect on Y of a one unit increase in X, holding all other
predictors fixed

~Siple  loor —> L P bt ot
— Mlliple Lioar —> phoe o best it
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Advertising Example

sales =~ [y + 1 X TV+ B2 X radio

— Radio

0/ UNSW
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C . Y= Bot X 16
Qualitative predictors Vs s

Suppose a predictor is qualitative (e.g. 2 different levels) - how would you
model/code this in a regression? What if there are more than 2 levels?

/Vo Cad@%o

X = Tes X=

My o ‘
Moy T
W

29/69
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Linear Algebra and Matrix Approach

The model can be re-written as: lY [ -
a veder 1= -POO +
y=Xp+e

with _p()() - ;( 76 -

— bo Ky 0T BPXP = [y, s U] -
\/_(B#‘BXr _1y;<[.y Xzy] " X patin

11 I12 . L1p
1 L21 L99 ... me
X = .
|1z T2 ... Ty |
T
éi — U307/317°' '7K%p]
-
€= [e1,...,En]

Note that the matrix X is of size n x p + 1, the vectors y, 8 and ¢ are column

i vectors.

30/69

Vecor
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Assumptions of the Model V= XB+ <

Weak Assumptions:

The error terms ¢; satisfy the following:

Elg|X=x]= 0, fori=12,...,n; SQMZ W
Var(g;|X = x) o, fori=1,2,...,n;
Cov(e;,ej|X=x)= 0, foralli=j. %; %ﬂl MW

In words, the errors have zero means, common variance, and are uncorrelated.
In matrix form, we have:

Ele] =0;  Cov(e) = oL,

where I, is a matrix of size n x n with ones on the diagonal and zeros on the off-
diagonal elements.

. ...-d
Strong Assumptions: ¢;|X = x '~ N(0,0?).
In words, errors are i.i.d. normal random variables with zero mean and
constant variance.
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Least Squares Estimates (LSE)

e Same least squares approach as in Simple Linear Regression

e Minimise the residuals sum of squared (RSS)

n n

RSS =S (i~ 52 = (v — o~ Brzan — ... — Byt
> (vi—9) Z(y 0 — Bz p«%‘p)oﬂj,

—(y-x8) Z ~ " (XTXYXTE
Lozé oF

e If (X"X) " exists, it can be shown that the solution is given by:

B= (XX

B )
MW? raliic oWMoW

e The corresponding vector of fitt predlcted ) values is

y = XB.
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Least Squares Estimates (LSE) - Properties
Under the weak assumptions we have unbiased estimators:

CErB]= t[G('X "XTB]

2. The variance-covariance matrix of the least squares estimators is: Var 6( X ) X Hﬂ]
2 (XTX)

1. The least squares estimators are unbiased: E[3] =

1\

3. An unbiased estimator of o2 is:

RSS
n—p—1’

9 1

el A ) (-7 =

I
™

p + 1 is the total number of parameters estimated.

4. Under the strong assumptions, each Bk is normally distributed. See details in
see slide.
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Test the Relationship Between the Response and

Predictors W
/ Is ol
HO:/Blz"':/szo
H, : at least one §; is non-zero 18 é ﬂ
o F-statistic = SS%S/ (nRSpS /11; rom ) povA W@

* Question: Given the individual p-values for each variable, why do we need to

look at the overall F-statistics?
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Analysis of variance (ANOVA)

The sums of squares are interpreted as follows:

e SST (or TSS) is the total variability in the absence of knowledge of the
variables X, ..., X,;

e SSE (or RSS) is the total variability remaining after introducing the effect of
X 1geeos Xp,'

* SSM is the total variability “explained” because of knowledge of Xi,..., X,.
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ANOVA

This partitioning of the variability is used in ANOVA tables:

36 /69

Source Sum of squares DoF Mean square /F\“\ p-value
Regression SSM = " (4; — §)? DFM =p MSM = 53 K %} 1 — Fprm,pre (£)
Error SSE = >"" | (yi — %i)? DFE=n-p-1 MSE = £%% ) -
Total SST = Y0, (y: — 9)° DFT =n -1 MST = Sir
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Model Fit and Predictions

e Measure model fit (similar to the simple linear regression)
= Residual standard error (RSE)
= R2
e Uncertainties associated with the predlctlon
= ﬂo, 61, e ﬁp are estimates EJL&
" linear model is an approximation

= random error e

-

w&[vwf

37 /69
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Example (continued)

ising

Advert

10:

Linear regression fit using TV and Rad

— Radio

..
]
>
—
<)
n

QO
o
=}
o
>
o

o

-+
(o)

=

s



Other Considerations in the Regression Model

* Qualitative predictors /{ dﬂ% —a‘;é

= two or more levels, with no logical ordering

Po + B
= create binary (0/1) dummy variables

= TPk X
» Need (#levels - 1) dummy variables to fully encode ,. M
* Interaction terms (X;X;) (removing the additive assumption)
CUeM, — @Quadratic terms (X?) (non-linear rs\l/\ationship) /\ 7\

0 O Y= Bot BX +BX

. ol & il § X=T-

39/69



iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad





40 /69

The credit dataset

20 40 60 80 100 5 10 15 20 2000 8000 14000
L L L L T N S R

Balance

0 500

2 4 6 8

Education

Income

50 100 150

600 1000

/' Rating [

L —
200 600 1000

200

| —
50 100 150

Qualitative covariates: own, student, status, region

s
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Linear Model selection Y= Bor BX Tt Baxy,

» Various approaches - we will focus on
" Subset selection
» Indirect methods

» Shrinkage (also called Regularization) (Later in the course)

[ X oo guslibitoe

thy B X, cureeis by 1 (Sths Fed)
VU eenses %}5" on Beee

» Dimension Reduction (Later in the course)
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Subset selection

* The classic approach is subset selection
e Standard approaches include

= Best subset

» Forward stepwise

= Backwards stepwise

» Hybrid stepwise

42 /69



iPad

iPad

iPad


s

43 /69

Best subset selection

Consider a linear model with n observations and p potential predictors:
Y =8y + 51Xy + B Xy + -+ - + B, X,

Algorithm:

Consider the models with 0 predictors, and call this M,. This is the null
model

Consider all models with 1 predictor, pick the best fit, and call this M

Consider the model with p predictor, and call this M,,. This is the full model
Pick the best fit of My, M;,..., M,

/4% R, ATC/ B’I@ Cp
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Best subset selection - behaviour

» Considers all possible models, given the predictors

e Optimal model My, sets p — k parameters to O, the rest are found using the
normal fitting technique

e Picks the best of all possible models, given selection criteria

e Very computationally expensive. Calculates:
~ (P
Z (k) = 2P models
k=0

_ %Pom‘sgp%
small.

44 /69
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Stepwise Example: Forward stepwise selection
Algorithm:

plic “the
Start with the null model M, //’”f’"”’"é ik o]

Consider the p models with 1 predictor, pick the best, and call this M;

Extend M; with one of the p — 1 remaining predictors. Pick the best, and call
this M>

End with the full model M,
Pick the best fit of My, M;y,..., M,
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Stepwise subset selection - behaviour

Considers a much smaller set of models, but the models are generally good
fits

Far less computationally expensive. Considers only:

-1

i

(p+1) @"M 7“’/
(p—k)=1—1—pp2 models < UM WM

=
|

0

Like best-subset, sets excluded predictor’s parameters to 0 ol P’
Backward and forward selection give similar, but possibly different models

Assumes each “best model” with n predictors is a proper subset of the one
with sizen + 1

» In other words, it only looks one step ahead at a time

Hybrid approaches exist, adding some variables, but also removing variables
at each step
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Example: Best subset and forward selection on
Credit data

# Variables Best subset Forward stepwise
1 rating rating
2 rating, income rating, income
3 rating, income, student rating, income, student

4 /car \,income, student, limit @income, student, limit

47 /69
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How to determine the “best” model

* Need a metric to compare different models

 R? can give misleading results as models with morg pargmeters always have a

higher R? on the training set:
1

1.0

|

2e+07 4e+07  6e+07 8e+07

Residual Sum of Squares

0.0 0.2 0.4 0.6 0.8

N

T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10

Number of Predictors Number of Predictors

RSS and R? for each possible model containing a subset of the ten predictors in the Credit data set.

e Want low test error:

» Indirect: estimate test error by adjusting the training error metric due to
bias from overfitting

@ect: e.g. cross-validation, validation set\ — C‘M <

48 /69
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Indirect methods

1. C, with d predictors: Ma/uot\) CP
%(RSS + &l@ Pgﬂﬂ,ﬁﬁ o) 7 F—QMS

e Unbiased estimate of test MSE if 62 is an unbiased estimate of o2

2. Akaike information criteria (AIC) with d predictors:

1
~(RSS + 2d62) - PW’%
n L

* Proportional to C,, for least squares, so gives the same results

49 /69
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Indirect methods cont.
3. Bayesian information criteria (BIC) with d predictors
%(RSS + log(n) d6®)

* log(n) > 2 forn > 7, so this is a much heavier penalty

4. Adjusted R? with d predictors RQ' . :
- RSS/(n—-d-1)

1

* Decreases in RSS from adding parameters are offset by the increase in
1/(n—d—1)

* lopularand infuitive, bt

measures

not as strong as the other

50 /69

SO M an bl

ssssss
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How to determine the “best” model - Credit
dataset

30000
|
30000
|

.ooXoooo
[ 4

25000
|
25000
|

C
20000
|
BIC
20000
|
Adjusted R?

15000
|
15000
|
0.86 0.88 090 092 094 0.96

[} L ]
e oo oo °
e o oo o oo

10000
|
10000
|

T T T T T T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Number of Predictors Number of Predictors Number of Predictors

51/69







52 /69

Potential Problems/Concerns

To apply linear regression properly:

{
e The relationship between the predictors and responé;’emeli_/meah%ditive

(i.e. effects of the covariates must be additive);

* Homoskedastic (constant) variance;

* Errors must be independent of the explanatory variables with mean zero
(weak assumptions);

e Errors must be Normally distributed, and hence, symmetric (only in case of
testing, i.e., strong assumptions).

l\"aml’rvwzl&/ w  om  woth g b Ted eror
Y

s
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Potential Problems/Concerns

1. Non-linearity of the response-predictor relationships
2. Correlation of error terms

3. Non-constant variance of error terms

4. Outliers

5. High-leverage points

6. Collinearity

7. Confounding effect (correlation does not imply causality!)

53 /69
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1. Non-linearities

Example: residuals vs fitted for MPG vs Horsepower:

Residual Plot for Linear Fit Residual Plot for Quadratic Fit
o
/\ 323 334
- ~ o 330 © - 323
4 t “ §> 334
~ /1 Q -
o -
g o - T X 7 2
3 3 = Po | X
X 2 oo s ° (
- Bp’r 1= ( o o
- v _|
Lrl) N : + K .x-
-
o 2 _ \/-— }?0 [ \
= -
Yo}
Ll‘_) | ‘T — 155
|
T T T T T T T T T T T
5 10 15 20 25 30 15 20 25 30 35
Fitted values Fitted values

LHS is a linear model. RHS is a quadratic model.

Quadratic model removes much of the pattern - we look at these in more detail

later.
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2. Correlations in the Error terms

sidu

,W % A‘N Z ! '55/69
orres. Fegossons '""f

The assumption in the regression model is that the error terms are 'to ok, M ertr
uncorrelated with each other.

If they are not uncorrelated the standard errors will be incorrect.
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3. Non-constant error terms
The following are two regression outputs vs Y (LHS) and InY (RHS)

Response Y Response log(Y)
0 |
~— <
s
e I\
N
0 — Qe
2 & ©
3 3
2 o - @ g _
o o 1
<
? 3 -
©
o d
- — o o
' ! cazz O
@
| T T T T Q T T T T T T
10 15 20 25 30 2.4 2.6 2.8 3.0 3.2 3.4
Fitted values Fitted values

In this example log transformation removed much of the heteroscedasticity.
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4. Quliers y, {
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5. High-leverage points

The following compares the fitted line with (RED) and without (BLUE)

observation 41 fitted. _ p Ouﬁ _qu_ M éﬂz / ,9442 p d_
Spiecatls

v 4 020
o Y7
©
3 o o 410
1)
&
N
~ F
N
c T 7
(0]
el
=) O o @B
[%9]
T @
O
T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25
X X1 Leverage
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High-leverage points p= &K 0
* Have unusual predictor values, causing the regression line to be dragged ~
towards them 1_X
* A few points can significantly affect the estimated regression line \(j AT
* Compute the leverage using the hat matrix: % p ;KCX )() X ) L(X

H= X(XTX)__li(JT

Note that L’?k M MM PQL g M ma

Yi = En: hijYj = h;Y; + zn: hijY;
j=1 J#1

so each prediction is a linear function of all observations, and h;; = [H|;; is the
weight of observation 7 on its own prediction

Ifw the predictor can be considered as having a high leverage

i is her o L, Han of i g beege.
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6. Collinearity X= (: - >

Two or more predictor values are closely related to each other

Reduces the accuracy of the regression by increasing the set of plausible

coefficient values _ £ a,ée - 4 -
O Tk

In effect, the causes SE of the beta coefficients to grow. p
Om ¢ =

Correlation can indicate one-to-one (linear) collinearity

X' x wnﬁMW s
(kY oo nit epcedl
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Collinearity makes optimisation harder

T — T T
0.16 0.17 0.18 0.19

BLimit

— Pake fpge .

?w Q-Vulue_
e Contour pldéts of the values as a function of the predictors. Credit dataset

used.
» Left: balance regressed onto age and 1imit. Predictors have low collinearity

e Right: balance regressed onto rating and limit. Predictors have high
collinearity

e Black: coefficient estimate
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Multicollinearity Xj = BotBXt- -t Bj-1 XKy

e Use variance inflation factor —-\ B\\'” X\:)’I‘l +-. Loy ﬁPXP\
A 1

VIF(B;) = 2
B G
. R%m x , is the R? from X being regressed onto all other predictors/ [ :

e Minimum 1, higher is worse (> 5 or 10 is considered high)

Lok o diferce
Q(*MM@ n S
oqa’au-}@vawﬁvs

ssssss
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7. Confounding effects

e But what about confounding variables? Be careful, correlation does not imply
causality!!

e ('is a confounder (confounding variable) of the relation between X and Y if:
» (' influences X and C influences Y,

" but X does not influence Y (directly).

dtp{'f’})ezw XM\/WM/@W/

1. Check this website on spurious correlations. ‘ / t t



https://www.tylervigen.com/spurious-correlations
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Confounding effects

e The predictor variable X would have an indirect influence on the dependent
variable Y.

» Example: Age = Experience = Probability of car accident. If experience
can not be measured, age can be a proxy for experience.

e The predictor variable X would have no direct influence on dependent
variable Y.

» Example: Becoming older does not make you a better driver.

* Hence, a predictor variable works as a predictor, but action taken on the
predictor itself will have no effect.

Aga%u«xmﬁm%cg
0 Cobuadg effedt s presit
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Confounding effects

How to correctly use/don’t use confounding variables?

* If a confounding variable is observable: add the confounding variable.

* If a confounding variable is unobservable: be careful with interpretation!
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Generalisations of the Linear Model

In much of the rest of this course, we discuss methods that expand the scope of
linear models and how they are fit:

Y 2 7//44%
Classification problems: logistic regression _ Wl i

-

e Non-normality: Generalised Linear Model

* Non-linearity: splines and generalized additive models; KNN, tree-based
methods ~ Week 7

e Regqularised fitting: Ridge regression and lasso

* Non-parametric: Tree-based methods, bagging, random forests and boosting,
KNN (these also capture non-linearities) D\JQQ,A— q / [ 0
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Appendix: Sum of squares

Recall from ACTL2131/ACTL5101, we have the following sum of squares:

- S
Swa: — i 2 — =
Z:Zl(cz: z) — s p—1
S — - (y o y)Z — 82 — Syy
vy § : i 1

_ _ S
Smy:Z(xi_w)(yi_y) — Sey = T

Here s3, s (and s,,) denote sample (co-)variance.
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Appendix: CI for 8; and By

Rationale for 3;: Recall that 3, is unbiased and Var(3;) = ¢2/8S,,. However o2 is

usually unknown, and estimated by s? so, under the strong assumptions, we

Bi—Bi ‘/
$/v/Sex 0/\/?

Xn2/n2

have:

. 2 n (e Bo— By )2
as € 1{1\(} N(O, 0_2) then (n_022)8 — > i1 (Wi 0-520 Bi-z;) ~ X721—2'

Note: Why do we lose two degrees of freedom? Because we estimated two
parameters!

Similar rationale for 3.

68 /69




s

Appendix: Statistical Properties of the Least
Squares Estimates

4. Under the strong assumptions of normality each component f; is normally
distributed with mean and variance

E[Bk] - 61{:’ Var(Bk) - 02 * Ckk,
and covariance between 8, and f;:

Cov(Bk, Bi) = o - cu,

where ¢y, is the (k + 1)™ diagonal entry of the matrix C = (X" X) -

The standard error of j; is estimated using se(Bk) — $4/Cip-
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