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Disclaimer
Some of the figures in this presentation are taken from “An Introduction to

Statistical Learning, with applications in R” (Springer, 2013) with permission

from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
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Overview

Simple Linear Regression

Multiple Linear Regression

Linear model Selection

Potential problems with Linear Regression

James et al (2021), Chapter 3, Chapter 6.1

Reading
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Linear Regression

A classical and easily applicable approach for supervised learning

Useful tool for predicting a quantitative response

Many more advanced techniques can be seen as an extension of linear

regression
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Simple Linear Regression
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Overview

Predict a quantitative response  based on a single predictor variable 

Approximately a linear relationship between  and 

Use (training) data to produce estimates  and 

Make predictions of  (given )

Y X

X Y

Y = β  +0 β  X +1 ϵ

  β̂0   β̂1

Y  i X = x  i

 =y  î   +β̂0   x  β̂1 i
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Advertising Example

sales ≈ β  +0 β  ×1 TV
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Assumptions of the Model

Weak assumptions

for ; for all  and . In other words, errors

have zero mean, common variance and are uncorrelated. Parameters

estimation: Least Squares

Strong assumptions

for . In other words, errors are i.i.d. Normal random variables

with zero mean and constant variance. Parameters estimation: Maximum

Likelihood or Least Squares

E(ϵ  ∣X =i  ) =x 0, V(ϵ  ∣X =i  ) =x σ2

and Cov(ϵ  , ϵ  ∣X =i j  ) =x 0

i = 1, 2, 3, ...,n i = j  =x x  , … ,x  [ 1 n]
⊤

ϵ  ∣X =i  x ∼
i.i.d.

N (0,σ )2

i = 1, 2, 3, ...,n
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Least Squares Estimates (LSE)

Most common approach to estimating  and 

Minimise the residual sum of squares (RSS)

The least square coefficient estimates are (make sure you can derive these!)

where  and . See  on ,  and sample

(co-)variances. Proof: See Lab questions.

  β̂0   β̂1

RSS =  (y  −
i=1

∑
n

i   ) =ŷi
2

 (y  −
i=1

∑
n

i   −β̂0   x  )β̂1 i
2

  

  β̂1

  β̂0

=  =  

 (x  −  )∑i=1
n

i x̄i 2

 (x  −  )(y  −   )∑i=1
n

i x̄i i ȳi

S  xx

S  xy

=  −   ȳ β̂1x̄

 ≡ȳ   y  

n
1 ∑i=1

n
i ≡x̄   x  

n
1 ∑i=1

n
i slide S  xy S  xx

LS Demo

8 / 69

True model is

BotBix E

ffa
IAN

Best
estimates Slide 67

notations

Orange
book

file:///C:/Users/Patrick/Dropbox/Lecturing/ACTL3142/ACTL3142-Shared/ACTL3142-Slides/docs/M2-Linear-Regression/linear-regression-demo.html


Least Squares Estimates (LSE) - Properties
Under the weak assumptions we have unbiased estimators:

An (unbiased) estimator of  is given by:

where  are called the residuals and RSE the residual standard

error.

Proof: See Lab questions.

E   ∣X =  =[β0 x] β  and E   ∣X =  =0 [β1 x] β  .1

σ2

  s2 =  =  =  = RSE
n − 2

  ∑
i=1
n

ϵi
2

n − 2

 y  −   +   x  ∑
i=1
n ( i (β0 β1 i))

2

n − 2

RSS 2

 =ϵi y  −i   =yi e  i

9 / 69

f
Varki X x



Least Squares Estimates (LSE) - Uncertainty
Under the weak assumptions we have that the (co-)variance of the parameters

is given by:

Proof: See Lab questions.

  

Var   ∣X =  =(β0 x)

=

Var   ∣X =  =(β1 x)

Cov   ,   ∣X =  =(β0 β1 x)

σ  +  = σ  +  

2(
n

1

 (x  − )∑
i=1
n

i x 2

x2 ) 2(
n

1

S  xx

x2 )
SE(  )β  0̂

2

 =  = SE(  )
 (x  − )∑i=1

n
i x 2

σ2

S  xx

σ2

β  1̂
2

−  = −  

 (x  − )∑i=1
n

i x 2

σx 2

S  xx

σx 2
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Maximum Likelihood Estimates (MLE)

In the regression model there are three parameters to estimate: , , and .

Under the strong assumptions (i.i.d Normal RV), the joint density of

 is the product of their marginals (independent by assumption)

so that the likelihood is:

Proof: See Lab questions.

β  0 β  1 σ2

Y  ,Y  , … ,Y  1 2 n

  

ℓ  ;β  ,β  ,σ =(y 0 1 ) − n log  σ −   y  − β  + β  x  .( 2π )
2σ2

1

i=1

∑
n

( i ( 0 1 i))2
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Maximum Likelihood Estimates (MLE)
Partial derivatives set to zero give the following MLEs:

and

Note that the parameters  and  have the same estimators as that produced

from Least Squares.

However, the MLE  is a biased estimator of .

In practice, we use the unbiased variant  (see ).

 

  =β1

  =β0

 =  ,
 x  −∑i=1

n ( i x)2

 x  − y  −  ∑i=1
n ( i x) ( i y)

S  xx

Sxy

 −   ,y β1x

 =σMLE
2

  y  −   +   x  .
n

1

i=1

∑
n

( i (β0 β1 i))
2

β  0 β  1

σ2 σ2

s2 slide
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Assessing the Accuracy I

How to assess the accuracy of the coefficient estimates? In particular, consider

the following questions:

What are the confidence intervals for  and ?

How to test the null hypothesis that there is no relationship between 

and ?

How to test if the influence of the exogeneous variable ( ) on the

endogenous variable ( ) is larger/smaller than some value?

For inference (e.g. confidence intervals, hypothesis tests), we need the strong assumptions!

β  0 β  1

X

Y

X

Y

Note
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Assessing the Accuracy II

How to assess the accuracy of the model?

How to assess the accuracy of the predictions? In particular:

for the population regression line (i.e. mean response)?

for the actual value of the dependent variable (i.e. individual response)?
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Assessing the Accuracy of the Coefficient
Estimates - Confidence Intervals
Using the strong assumptions, a  confidence interval (CI) for ,

and resp. for , are given by:

for : for :

See .

100 1 − α %( ) β  1

β  0

β  1

  ±β1 t  ⋅1−α/2,n−2  

(  SÊ β  )1
^

  

 S  xx

s

β  0

  ±β0 t  ⋅1−α/2,n−2  

(  )SÊ β  0̂

 s   +  

n

1

S  xx

x2

rationale slide
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope

When we want to test whether the exogenous variable has an influence on the

endogenous variable or if the influence is larger/smaller than some value.

For testing the hypothesis

for some constant , we use the test statistic:

which has a  distribution under the  (see ).

H  :0 β  =1   vs H  :β1 1 β  =1    β1

  β1

t(   ) =β1  =
(  )SÊ β  1̂

  −   β1 β1
 

s  ( / S  xx )
  −   β1 β1

t  n−2 H  0 rationale slide
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the slope
The decision rules under various alternative hypotheses are summarized below.

Decision Making Procedures for Testing 

Alternative Reject  in favor of  if

To test whether the regressor variable is significant or not, it is equivalent to

testing whether the slope is zero or not. Thus, test  against 

H  :0 β  =1   β1

H  1 H  0 H  1

β  =1    β1  t    >
∣
∣ (β1)∣

∣
t  1−α/2,n−2

β  >1   β1 t   >(β1) t  1−α,n−2

β  <1   β1 t   <(β1) −t  1−α,n−2

H  :0 β  =1 0 H  :1 β  =1 

0.
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Assessing the Accuracy of the Coefficient
Estimates - Inference on the intercept
Similarly, for testing the null hypothesis  for some constant , we

use the test statistic:

which has a  distribution under the  (see ).

H  :0 β  =0   β0   β0

t   =(β0)  =
(  )SÊ β  0̂

  −   β0 β0
 ,

s  (  +  

n
1

S  xx

x2 )
  −   β0 β0

t  n−2 H  0 rationale slide
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Assessing the Accuracy of the Coefficient
Estimates - Advertising Example
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Assessing the Accuracy of the Model
Partitioning the variability is used to assess how well the linear model explains

the trend in data:

We then obtain:

where:

SST or TSS: total sum of squares;

SSE or RSS: sum of squares error or residual sum of squares;

SSM: sum of squares model (sometime called regression).

Proof: See Lab questions

 =

total deviation

 y  −  i y  +

unexplained deviation

 y −   ( i yi)  

explained deviation

   −  .(yi y)

 =

SST

  y  −   

i=1

∑
n

( i y)2
 +

SSE

  y  −    

i=1

∑
n

( i yi)
2

 ,

SSM

    −   

i=1

∑
n

(yi y)2
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Assessing the Accuracy of the Model
Interpret these sums of squares as follows:

SST (or TSS) is the total variability in the absence of knowledge of the variable

;

SSE (or RSS) is the total variability remaining after introducing the effect of ;

SSM is the total variability “explained” because of knowledge of .

This partitioning of the variability is used in ANOVA tables:

Source Sum of squares DoF Mean square F

Regression

Error

Total

X

X

X

SSM =  (  −∑i=1
n

yi  )y 2 DFM = 1 MSM =  

DFM
SSM

 

MSE
MSM

SSE =  (y  −∑i=1
n

i   )yi 2 DFE = n − 2 MSE =  DFE
SSE

SST =  (y  −∑i=1
n

i  )y 2 DFT = n − 1 MST =  

DFT
SST
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Assessing the Accuracy of the Model
Noting that:

we can define the  statistic, the square of the sample correlation, as:

 is interpreted as the proportion of total variation in the ’s explained by

the variable  in a linear regression model.

 takes on a value between 0 and 1.

 is also called coefficient of determination.

Proof: See Lab questions

 

SSE =  −  ,

=SST

 S  yy

=SSM

   S  β1 xy

R2

 
R =  =    =  =  = 1 −  .2 (

 S  ⋅ S  xx yy

S  xy )
2

β1
S  yy

S  xy

SST

  S  β1 xy

SST

SSM

SST

SSE

R2 yi

x

R2

R2

22 / 69

iPad

iPad

iPad

iPad

iPad

iPad



Assessing the Accuracy of the Predictions - Mean
Response
Suppose  is a specified value of the out of sample regressor variable and we

want to predict the corresponding  value associated with it. The mean of  is:

Our (unbiased) estimator for this mean (also the fitted value of ) is:

The variance of this estimator is:

Proof: See Lab questions.

x = x  0

Y Y

  

E[Y ∣ x  ]0 = E[β  + β  x ∣ x = x  ]0 1 0

= β  + β  x  .0 1 0

y  0

  =y0   +β0   x  .β1 0

Var(   ) =y0  +  σ =(
n

1

S  xx

( − x  )x 0
2) 2 SE(   )ŷ0

2
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Assessing the Accuracy of the Predictions - Mean
Response
Using the strong assumptions, the  confidence interval for 

 (mean of ) is:

as we have and

Similar rationale to .

100 1 − α %( ) β  +0

β  x  1 0 Y

 ±

  ŷ0

 (   +   x  )β0 β1 0 t  ×1−α/2,n−2  ,

(   )SÊ ŷ0

 s   +  

n

1

S  xx

− x  (x 0)2

  ∼y0 N (β  +0 β  x  , SE(   ) )1 0 ŷ0
2

 ∼
(   )SÊ ŷ0

  − (β  + β  x  )y0 0 1 0
t(n − 2).

slide
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Assessing the Accuracy of the Predictions -
Individual response
A prediction interval is a confidence interval for the actual value of a  (not for

its mean ). We base our prediction of  (given ) on:

The error in our prediction is:

with

Proof: See Lab questions.

Y  i

β  +0 β  x  1 i Y  i X = x  i

  =yi  +β0   x  .β1 i

 

Y  −   = β  + β  x  + ϵ  −   = E[Y ∣X = x  ] −   + ϵ  .i yi 0 1 i i yi i yi i

E Y  −  ∣  =  ,X = x  =[ i yi X x i] 0,  and 

Var(Y  −i   ∣  =yi X  ,X =x x  ) =i σ (1 +2
 +

n

1
 ).

S  xx

( − x  )x i
2
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Assessing the Accuracy of the Predictions -
Individual response
A % prediction interval for , the value of  at , is given by:

as

100(1 − α) Y  i Y X = x  i

 

 ± t  ⋅ s ⋅  ,

  yi

   +   x  β0 β1 i 1−α/2,n−2 1 +  +  

n

1

S  xx

( − x  )x i
2

(Y  −i   ∣  =yi X  ,X =x x  ) ∼i N(0,σ (1 +2
 +

n

1
 )),  and 

S  xx

( − x  )x i
2

 ∼
s  1 +  +  

n
1

S  xx

( −x  )x i
2

Y  −   i yi
t  .n−2
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Multiple Linear Regression
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Overview

Extend the simple linear regression model to accommodate multiple

predictors

: the average effect on  of a one unit increase in , holding all other

predictors fixed

Y = β  +0 β  X  +1 1 β  X  +2 2 ⋯ + β  X  +p p ϵ

β  j Y X  j

27 / 69

iPad

iPad



Advertising Example

sales ≈ β  +0 β  ×1 TV + β  ×2 radio
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Qualitative predictors
Suppose a predictor is qualitative (e.g. 2 different levels) - how would you

model/code this in a regression? What if there are more than 2 levels?
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Linear Algebra and Matrix Approach
The model can be re-written as:

with

Note that the matrix  is of size , the vectors ,  and  are column

vectors.

 =y X  +β  ε

 =y y  , … , y  [ 1 n]⊤

X =        

⎣
⎡ 1

1

⋮
1

x  11

x  21

⋮
x  n1

x  12

x  22

⋮
x  n2

…
…

⋱
…

x  1,p

x  2,p

⋮
x  n,p

⎦
⎤

 =β β  ,β  , … ,β  [ 0 1 p]
⊤

 =ε ε  , … , ε  [ 1 n]⊤

X n × p + 1  y  β  ε
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Assumptions of the Model
Weak Assumptions:

The error terms  satisfy the following:

In words, the errors have zero means, common variance, and are uncorrelated.

In matrix form, we have:

where  is a matrix of size  with ones on the diagonal and zeros on the off-

diagonal elements.

Strong Assumptions: 

In words, errors are i.i.d. normal random variables with zero mean and

constant variance.

ε  i

 

   

E[ε  ∣X = x] =i

Var(ε  ∣X = x) =i

Cov(ε  , ε  ∣X = x) =i j

0,
σ ,2

0,

 for i = 1, 2, … ,n;
 for i = 1, 2, … ,n;
 for all i = j.

 

E  =  ; Cov  = σ I  ,[ε] 0 (ε) 2
n

I  n n × n

ε  ∣X =i x ∼
i.i.d
N (0,σ ).2
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Least Squares Estimates (LSE)

Same least squares approach as in Simple Linear Regression

Minimise the residuals sum of squared (RSS)

If  exists, it can be shown that the solution is given by:

The corresponding vector of fitted (or predicted) values is

  

RSS =  y  −   =  y  −   −   x  − … −   x  

i=1

∑
n

( i yi)
2

i=1

∑
n

( i β0 β1 i1 βp ip)
2

=  −X   −X  =   .(y β)
⊤
(y β)

i=1

∑
n

εi
2

X X( ⊤ )
−1

 = β X X X  .( ⊤ )
−1 ⊤y

 = y X  . β
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Least Squares Estimates (LSE) - Properties
Under the weak assumptions we have unbiased estimators:

1. The least squares estimators are unbiased: .

2. The variance-covariance matrix of the least squares estimators is: 

.

3. An unbiased estimator of  is:

 is the total number of parameters estimated.

4. Under the strong assumptions, each  is normally distributed. See details in

see .

E[  ] = β  β

Var(  ) = β

σ ⋅2
X X( ⊤ )

−1

σ2

s =2
  −   −  =

n − p − 1

1
(y  y)

⊤
(y  y)  ,

n − p − 1

RSS

p + 1

  βk
slide
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Test the Relationship Between the Response and
Predictors

Question: Given the individual p-values for each variable, why do we need to

look at the overall F-statistics?

H  :0 β  =1 ⋯ = β  =p 0

H  :a at least one β   is non-zeroj

F-statistic =  

RSS/(n−p−1)
(TSS−RSS)/p
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Analysis of variance (ANOVA)
The sums of squares are interpreted as follows:

SST (or TSS) is the total variability in the absence of knowledge of the

variables ;

SSE (or RSS) is the total variability remaining after introducing the effect of

;

SSM is the total variability “explained” because of knowledge of .

X  , … ,X  1 p

X  , … ,X  1 p

X  , … ,X1 p
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ANOVA
This partitioning of the variability is used in ANOVA tables:

Source Sum of squares DoF Mean square F p-value

Regression

Error

Total

SSM =  (  −∑i=1
n

y  î  )ȳ 2 DFM = p MSM =  

DFM
SSM

 

MSE
MSM 1 − F  (F )DFM,DFE

SSE =  (y  −∑i=1
n

i  )y  î
2 DFE = n − p − 1 MSE =  

DFE
SSE

SST =  (y  −∑i=1
n

i  )ȳ 2 DFT = n − 1 MST =  

DFT
SST
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Model Fit and Predictions

Measure model fit (similar to the simple linear regression)

Residual standard error (RSE)

Uncertainties associated with the prediction

 are estimates

linear model is an approximation

random error 

R2

  ,   , ⋯ ,   β̂0 β̂1 β̂p

ϵ

37 / 69

iPad

iPad

iPad

iPad



Advertising Example (continued)
Linear regression fit using TV and Radio:

What do you observe?
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Other Considerations in the Regression Model

Qualitative predictors

two or more levels, with no logical ordering

create binary (0/1) dummy variables

Need (#levels - 1) dummy variables to fully encode

Interaction terms  (removing the additive assumption)

Quadratic terms  (non-linear relationship)

(X  X  )i j

(X  )i
2
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Linear model selection
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The credit dataset

Qualitative covariates: own, student, status, region
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Linear Model selection

Various approaches - we will focus on

Subset selection

Indirect methods

Shrinkage (also called Regularization) (Later in the course)

Dimension Reduction (Later in the course)
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Subset selection

The classic approach is subset selection

Standard approaches include

Best subset

Forward stepwise

Backwards stepwise

Hybrid stepwise
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Best subset selection
Consider a linear model with  observations and  potential predictors:

Algorithm:

Consider the models with 0 predictors, and call this . This is the null

model

Consider all models with 1 predictor, pick the best fit, and call this 

Consider the model with  predictor, and call this . This is the full model

Pick the best fit of 

n p

Y = β  +0 β  X  +1 1 β  X  +2 2 ⋯ + β  X  p p

M  0

M1

…

p M  p

M  ,M  , … ,M  0 1 p
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Best subset selection - behaviour

Considers all possible models, given the predictors

Optimal model  sets  parameters to 0, the rest are found using the

normal fitting technique

Picks the best of all possible models, given selection criteria

Very computationally expensive. Calculates:

M  k p − k

  =
k=0

∑
p

(
k

p) 2  modelsp
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Stepwise Example: Forward stepwise selection
Algorithm:

Start with the null model 

Consider the  models with 1 predictor, pick the best, and call this 

Extend  with one of the  remaining predictors. Pick the best, and call

this 

End with the full model 

Pick the best fit of 

M  0

p M  1

M  1 p − 1

M  2

…

M  p

M  ,M  , … ,M  0 1 p
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Stepwise subset selection - behaviour

Considers a much smaller set of models, but the models are generally good

fits

Far less computationally expensive. Considers only:

Like best-subset, sets excluded predictor’s parameters to 0

Backward and forward selection give similar, but possibly different models

Assumes each “best model” with  predictors is a proper subset of the one

with size 

In other words, it only looks one step ahead at a time

Hybrid approaches exist, adding some variables, but also removing variables

at each step

 (p −
k=0

∑
p−1

k) = 1 +   models
2

p(p + 1)

n

n + 1
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Example: Best subset and forward selection on
Credit data

# Variables Best subset Forward stepwise

1 rating rating

2 rating, income rating, income

3 rating, income, student rating, income, student

4 cards, income, student, limit rating, income, student, limit

47 / 69

iPad



How to determine the “best” model

Need a metric to compare different models

 can give misleading results as models with more parameters always have a

higher  on the training set:

RSS and  for each possible model containing a subset of the ten predictors in the Credit data set.

Want low test error:

Indirect: estimate test error by adjusting the training error metric due to

bias from overfitting

Direct: e.g. cross-validation, validation set

R2

R2

R2
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Indirect methods

1.  with  predictors:

Unbiased estimate of test MSE if  is an unbiased estimate of 

2. Akaike information criteria (AIC) with  predictors:

Proportional to  for least squares, so gives the same results

C  p d

 (RSS +
n

1
2d )σ̂2

σ̂2 σ2

d

 (RSS +
n

1
2d )σ̂2

C  p
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Indirect methods cont.

3. Bayesian information criteria (BIC) with  predictors

 for , so this is a much heavier penalty

4. Adjusted  with  predictors

Decreases in  from adding parameters are offset by the increase in

Popular and intuitive, but theoretical backing not as strong as the other

measures

d

 (RSS +
n

1
log(n) d )σ̂2

log(n) > 2 n > 7

R2 d

1 −  

TSS/(n − 1)

RSS/(n − d − 1)

RSS

1/(n − d − 1)
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How to determine the “best” model - Credit
dataset
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Potential problems with Linear
Regression

51 / 69



Potential Problems/Concerns
To apply linear regression properly:

The relationship between the predictors and response are linear and additive

(i.e. effects of the covariates must be additive);

Homoskedastic (constant) variance;

Errors must be independent of the explanatory variables with mean zero

(weak assumptions);

Errors must be Normally distributed, and hence, symmetric (only in case of

testing, i.e., strong assumptions).
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Potential Problems/Concerns

1. Non-linearity of the response-predictor relationships

2. Correlation of error terms

3. Non-constant variance of error terms

4. Outliers

5. High-leverage points

6. Collinearity

7. Confounding effect (correlation does not imply causality!)
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1. Non-linearities
Example: residuals vs fitted for MPG vs Horsepower:

LHS is a linear model. RHS is a quadratic model.

Quadratic model removes much of the pattern - we look at these in more detail

later.
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2. Correlations in the Error terms

The assumption in the regression model is that the error terms are

uncorrelated with each other.

If they are not uncorrelated the standard errors will be incorrect.
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3. Non-constant error terms
The following are two regression outputs vs Y (LHS) and lnY (RHS)

In this example log transformation removed much of the heteroscedasticity.
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4. Ouliers
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5. High-leverage points
The following compares the fitted line with (RED) and without (BLUE)

observation 41 fitted.
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High-leverage points

Have unusual predictor values, causing the regression line to be dragged

towards them

A few points can significantly affect the estimated regression line

Compute the leverage using the hat matrix:

Note that

so each prediction is a linear function of all observations, and  is the

weight of observation  on its own prediction

If , the predictor can be considered as having a high leverage

H = X(X X) XT −1 T

 =Y  î  h  Yj =
j=1

∑
n

ij h  Y  +ii i  h  Y  

j=i

∑
n

ij j

h  =ii [H]  ii

i

h  >ii 2(p + 1)/n
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6. Collinearity

Two or more predictor values are closely related to each other

Reduces the accuracy of the regression by increasing the set of plausible

coefficient values

In effect, the causes SE of the beta coefficients to grow.

Correlation can indicate one-to-one (linear) collinearity
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Collinearity makes optimisation harder

Contour plots of the values as a function of the predictors. Credit dataset

used.

Left: balance regressed onto age and limit. Predictors have low collinearity

Right: balance regressed onto rating and limit. Predictors have high

collinearity

Black: coefficient estimate
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Multicollinearity

Use variance inflation factor

 is the  from  being regressed onto all other predictors

Minimum 1, higher is worse (  or 10 is considered high)

VIF(   ) =β̂j  

1 − R  

X  ∣X  j −j

2

1

R  

X  ∣X  j −j

2 R2 X  j

> 5
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7. Confounding effects

But what about confounding variables? Be careful, correlation does not imply

causality!1

 is a confounder (confounding variable) of the relation between  and  if:

 influences  and  influences ,

but  does not influence  (directly).

C X Y

C X C Y

X Y

1. Check this website on .spurious correlations
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Confounding effects

The predictor variable  would have an indirect influence on the dependent

variable .

Example: Age  Experience  Probability of car accident. If experience

can not be measured, age can be a proxy for experience.

The predictor variable  would have no direct influence on dependent

variable .

Example: Becoming older does not make you a better driver.

Hence, a predictor variable works as a predictor, but action taken on the

predictor itself will have no effect.

X

Y

⇒ ⇒

X

Y
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Confounding effects
How to correctly use/don’t use confounding variables?

If a confounding variable is observable: add the confounding variable.

If a confounding variable is unobservable: be careful with interpretation!
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So what’s next
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Generalisations of the Linear Model
In much of the rest of this course, we discuss methods that expand the scope of

linear models and how they are fit:

Classification problems: logistic regression

Non-normality: Generalised Linear Model

Non-linearity: splines and generalized additive models; KNN, tree-based

methods

Regularised fitting: Ridge regression and lasso

Non-parametric: Tree-based methods, bagging, random forests and boosting,

KNN (these also capture non-linearities)

66 / 69

iPad

iPad

iPad

iPad

iPad



Appendices
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Appendix: Sum of squares
Recall from ACTL2131/ACTL5101, we have the following sum of squares:

Here ,  (and ) denote sample (co-)variance.

   

S  xx

S  yy

S  xy

=  (x  − )
i=1

∑
n

i x 2

=  (y  −  )
i=1

∑
n

i y 2

=  (x  − )(y  −  )
i=1

∑
n

i x i y

⟹ s  =  x
2

n − 1
S  xx

⟹ s  =  y
2

n − 1
S  yy

⟹ s  =  ,xy
n − 1
S  xy

s  x
2 s  y

2 s  xy
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Appendix: CI for  and 
Rationale for : Recall that  is unbiased and . However  is

usually unknown, and estimated by  so, under the strong assumptions, we

have:

as  then .

Note: Why do we lose two degrees of freedom? Because we estimated two

parameters!

Similar rationale for .

β  1 β  0

β  1   β1 Var(   ) =β1 σ /S  

2
xx σ2

s2

 =
s/  S  xx

  − β  β1 1
  

∼

N (0,1)

  

σ/  S  xx

  − β  β1 1/
 χ  /(n−2)n−2

2

   

n − 2

 

σ2
(n−2)⋅s2

t  n−2

ϵ  i ∼
i.i.d.

N (0,σ )2
 =

σ2

(n−2)⋅s2

 ∼
σ2

 (y  −   −   ⋅x  )∑i=1
n

i β0 β1 i
2

χ  n−2
2

β  0
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Appendix: Statistical Properties of the Least
Squares Estimates

4. Under the strong assumptions of normality each component  is normally

distributed with mean and variance

and covariance between  and :

where  is the  diagonal entry of the matrix .

The standard error of  is estimated using 

  βk

E[   ] =βk β  , Var(   ) =k βk σ ⋅2 c  ,kk

  βk   βl

Cov(   ,   ) =βk βl σ ⋅2 c  ,kl

c  kk k + 1( )th
C = X X( ⊤ )

−1

 βk se(   ) =βk s  .c  kk
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