
Logistic Regression
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications
Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with

permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
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Regression vs. classification
Regression

 is quantitative, continuous

Examples: Sales prediction, claim size
prediction, stock price modelling

Classification

 is qualitative, discrete

Examples: Fraud detection, face
recognition, accident occurrence,
death

Y Y
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Some examples of classification problems
Success/failure of a treatment, explained by dosage of medicine administered,
patient’s age, sex, weight and severity of condition, etc.

Vote for/against political party, explained by age, gender, education level,
region, ethnicity, geographical location, etc.

Customer churns/stays depending on usage pattern, complaints, social
demographics, etc.
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Example: Predicting defaults (Default from
ISLR2)

default ( ) is a binary variable (yes/no or 0/1)

Annual income ( ) and credit card balance ( ) may be continuous
predictors

Y

X ​1 X ​2
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Example: Predicting defaults - Discussion
Simple linear regression on Default data:

What do you observe?
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Classification problems
Coding in the binary case is simple

Our objective is to find a good predictive
model  that can:

1. Estimate the probability

2. Classify observation

Y ∈ {0, 1} ⇔ Y ∈ {∙, ∙}

f

P(Y = 1∣X) ∈ {0, 1}

f(X) → ∙∙∙∙∙∙∙∙

f(X) → ∈Ŷ {∙, ∙}

6 / 31



Lecture Outline

Logistic regression

An overview of classification

Poisson regression

Generalised linear models

6 / 31



Logistic regression
Extend linear regression to model binary categorical variables

​ =

log-odds

​ln (
1 − P(Y = 1∣X)

P(Y = 1∣X) ) ​

linear model

​β ​ + β ​X ​ + ⋯ + β ​X ​0 1 1 p p
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Principles of Logistic Regression
The output is binary 

Each case’s  variable has a probability between 0 and 1 that depends on the
values of the predictors  such that

Probability can be restated as odds

Odds are a measure of relative probabilities

Y ∈ {1, 0}

Y

X

P(Y = 1∣X) + P(Y = 0∣X) = 1

Odds(Y = 1∣X) = ​ =P(Y = 0∣X)
P(Y = 1∣X)

​

1 − P(Y = 1∣X)
P(Y = 1∣X)
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Probabilities, odds and log-odds
Goal: Transform a number between 0 and 1 into a number between  and

probability odds logodds

0.001 0.001 -6.907

0.250 0.333 -1.099

0.500 1.000 0.000

0.750 3.000 1.099

0.999 999.000 6.907

−∞
−∞
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Logistic regression
Perform regression on log-odds

Use (training) data and maximum-likelihood estimation to produce estimates
.

Predict probabilities using

ln ​ =(
1 − P(Y = 1∣X)

P(Y = 1∣X) ) β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​p p

​ ​, ​ ​, … ​ ​β̂0 β̂1 β̂p

P(Y = 1∣X) = ​

1 + e ​ ​+ ​ ​X ​+⋯+ ​ ​X ​β̂0 β̂1 1 β̂p p

e ​+ ​ ​X ​+⋯+ ​ ​X ​β̂0 β̂1 1 β̂p p
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Interpretation of coefficients
Recall for multiple linear regression we model the response as

An increase of the entry  by 1 in  we would predict  to increase by  on
average since

For logistic regression we have a similar relationship. When  increases by 1
we would expect the log-odds for  to increase by .

The new predicted probability of success by increasing  by 1 is now

Convince yourself that the probability does increase if  is positive!

Y = β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​ +p p ε.

x ​ij X Yi ​ ​β̂j

E[Y ​∣X] =i ​ ​ +β̂0 ​ ​x ​ +β̂1 i1 ⋯ + ​ ​(x +β̂j ij 1) + ⋯ + ​ ​x ​β̂p ip

x ​ij

Y ​i β ​j

x ​ij

P(Y ​ =i 1∣X) = ​ .
1 + e ​ ​+ ​ ​x ​+⋯+ ​ ​(x ​+1)+⋯+ ​ ​x ​β̂0 β̂1 i1 β̂j ij β̂p ip

e ​ ​+ ​ ​x ​+⋯+ ​ ​(x ​+1)+⋯+ ​ ​x ​β̂0 β̂1 i1 β̂j ij β̂p ip

β ​j
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How are the coefficients estimated?
Recall the Bernoulli distribution is parameterised by a parameter  and has
the density

In logistic regression we maximise the likelihood of the data. Denote

where  denotes the ’th row of .

We maximise the log-likelihood below

We take partials w.r.t. to each  and set to 0. Needs numerical approximation.

p

f(y) = p (1 −y p) .1−y

p(y ​;β) =i ​ ,
1 + e−x ​βi

1

x ​i i X

ℓ(β) = ​y ​ ln p(y ​;β) +
i=1

∑
n

i i (1 − y ​) ln(1 −i p(y ​;β)).i

β ​j
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Toy example: Logistic Regression

The parameter estimates are  13.671, 
-4.136,  2.803

 -4.136 implies that the bigger  the
lower the chance it is a blue point

 2.803 implies that the bigger  the
higher the chance it is a blue point

Y = ​ ​ ln ​ ={1
0

if ∙
if ∙

(
1 − P(Y = 1∣X)

P(Y = 1∣X) ) β ​ +0 β ​X ​ +1 1 β ​X ​2 2

​ =β̂0 ​ ​ =β̂1

​ ​ =β̂2

​ ​ =β̂1 X ​1

​ ​ =β̂2 X ​2
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Toy example: Logistic Regression

X1 X2 log-odds P(Y=1|X) prediction

7.0 8.0 7.14 0.9992 blue

8.0 7.5 1.61 0.8328 blue

8.0 7.0 0.20 0.5508 blue

8.5 7.5 -0.46 0.3864 green

9.0 7.0 -3.93 0.0192 green

ln ​ =(
1 − P(Y = 1∣X)

P(Y = 1∣X) ) 13.671 − 4.136X ​ +1 2.803X ​2
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Some important points about logistic regression
Changes in predictor values correspond to changes in the log-odds, not the
probability

Evaluating predictors to add / remove is the same as in linear regression. The
only change is the form of the response

As a result, most of the modelling limitations of linear regression
(e.g. collinearity) carry over as well

Possible to do logistic regression on non-binary responses, but not used that
often, and not covered here
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Example: Predicting defaults
glmStudent <- glm(default ~ student, family = binomial(), data = ISLR2::Default)1
summary(glmStudent)2

Call:
glm(formula = default ~ student, family = binomial(), data = ISLR2::Default)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -3.50413    0.07071  -49.55  < 2e-16 ***
studentYes   0.40489    0.11502    3.52 0.000431 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2920.6  on 9999  degrees of freedom
Residual deviance: 2908.7  on 9998  degrees of freedom
AIC: 2912.7

Number of Fisher Scoring iterations: 6
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Example: Predicting defaults
glmAll <- glm(default ~ balance + income + student, family = binomial(), data = ISLR2::Default)1
summary(glmAll)2

Call:
glm(formula = default ~ balance + income + student, family = binomial(), 
    data = ISLR2::Default)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 ***
balance      5.737e-03  2.319e-04  24.738  < 2e-16 ***
income       3.033e-06  8.203e-06   0.370  0.71152    
studentYes  -6.468e-01  2.363e-01  -2.738  0.00619 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2920.6  on 9999  degrees of freedom
Residual deviance: 1571.5  on 9996  degrees of freedom
AIC: 1579.5

Number of Fisher Scoring iterations: 8
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Example: Predicting defaults - Discussion
Results of logistic regression:

default against student

Predictor Coefficient Std error Z-statistic P-value

(Intercept) -3.5041 0.0707 -49.55 <0.0001

student = Yes 0.4049 0.1150 3.52 0.0004

default against balance, income, and student

Predictor Coefficient Std error Z-statistic P-value

(Intercept) -10.8690 0.4923 -22.080 < 0.0001

balance 0.0057 2.319e-04 24.738 < 0.0001

income 0.0030 8.203e-06 0.370 0.71152

student = Yes -0.6468 0.2362 -2.738 0.00619

18 / 31



Assessing accuracy in classification problems
We assess model accuracy using the error rate

In our toy example with a 50% threshold

error rate = ​ ​ I(y ​ =
n

1

i=1

∑
n

i  ​ ​)ŷi

training error rate = ​ =
30
6

0.2
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Confusion matrix: Toy example (50% Threshold)
Confusion matrix

Total

10 2 12

4 14 18

Total 14 16 30

Y = 0 Y = 1

=Ŷ 0

=Ŷ 1

True-Positive Rate = ​ =16
14 0.875

False-Positive Rate = ​ =14
4 0.286
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Confusion matrix: Toy example (15% Threshold)
Confusion matrix

Total

6 0 6

8 16 24

Total 14 16 30

Y = 0 Y = 1

=Ŷ 0

=Ŷ 1

True-Positive Rate = ​ =16
16 1

False-Positive Rate = ​ =14
8 0.429
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ROC Curve and AUC: Toy example

ROC Curve: Plots the true-positive rate against the false-positive rate
A good model will have its ROC curve hug the top-left corner more

AUC is the area under the ROC curve: For this toy example  0.8929AUC=

22 / 31



Lecture Outline

Poisson regression

An overview of classification

Logistic regression

Generalised linear models

22 / 31



Poisson regression - Motivation
In many application we need to model count data:

In mortality studies the aim is to explain the number of deaths in terms of
variables such as age, gender and lifestyle.
In health insurance, we may wish to explain the number of claims made by
different individuals or groups of individuals in terms of explanatory
variables such as age, gender and occupation.

In general insurance, the count of interest may be the number of claims made
on vehicle insurance policies. This could be a function of the color of the car,
engine capacity, previous claims experience, and so on.
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The Bikeshare dataset
str(ISLR2::Bikeshare)1

'data.frame':   8645 obs. of  15 variables:
 $ season    : num  1 1 1 1 1 1 1 1 1 1 ...
 $ mnth      : Factor w/ 12 levels "Jan","Feb","March",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ day       : num  1 1 1 1 1 1 1 1 1 1 ...
 $ hr        : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ holiday   : num  0 0 0 0 0 0 0 0 0 0 ...
 $ weekday   : num  6 6 6 6 6 6 6 6 6 6 ...
 $ workingday: num  0 0 0 0 0 0 0 0 0 0 ...
 $ weathersit: Factor w/ 4 levels "clear","cloudy/misty",..: 1 1 1 1 1 2 1 1 1 1 ...
 $ temp      : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
 $ atemp     : num  0.288 0.273 0.273 0.288 0.288 ...
 $ hum       : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
 $ windspeed : num  0 0 0 0 0 0.0896 0 0 0 0 ...
 $ casual    : num  3 8 5 3 0 0 2 1 1 8 ...
 $ registered: num  13 32 27 10 1 1 0 2 7 6 ...
 $ bikers    : num  16 40 32 13 1 1 2 3 8 14 ...
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The Bikeshare dataset - Discussion

How could we model the number of bikers as function of the other variables?
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Why not use muliple linear regression?

Could predict negative values
Constant variance may be
inadequate
Assumes continuous numbers
while counts are integers

Solves problem of negative values
May solve constant variance
problem
Assumes continuous numbers while
counts are integers

Not applicable with zero counts

Y = β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​ +p p ϵ log(Y ) = β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​ +p p ϵ
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Poisson regression
Assume that 

Assume that  is log-linear in the predictors

Use data and maximum-likelihood estimation to obtain 

Y ∼ Poisson(λ)

P(Y = k) = ​ for k =
k!

e λλ k

0, 1, 2, … with E[Y ] = Var(Y ) = λ

E[Y ] = λ(X ​, … ,X ​)1 p

log(λ(X ​, … ,X ​)) =1 p β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​p p

​ ​, ​ ​, … ​ ​β̂0 β̂1 β̂p

L(β ​,β ​, … ,β ​) =0 1 p ​ ​ with λ(x ​) =
i=1

∏
n

y ​!i

e λ(x ​)λ(x )i
i
y ​i

i β ​ +0 β ​x ​ +1 i1 ⋯ + β ​x ​p p1
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Some important points about Poisson regression
Interpretation: An increase in  by one unit is associated with a change in

 by a factor .

Mean-variance relationship:  implies that the variance is
non-constant and increases with the mean.
Non-negative fitted values: Predictions are always positive

Evaluating predictors to add / remove is the same as in linear regression. The
only change is the form of the response

As a result, most of the modelling limitations of linear regression
(e.g. collinearity) carry over as well

X ​j

E[Y ] eβ ​j

E[Y ] = Var(Y ) = λ
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Poisson regression - Bikeshare dataset
glmBikeshare <- glm(bikers ~ workingday + temp + weathersit + mnth + hr,  family = poisson(), 1
                    data = ISLR2::Bikeshare)2
summary(glmBikeshare)3

Call:
glm(formula = bikers ~ workingday + temp + weathersit + mnth + 
    hr, family = poisson(), data = ISLR2::Bikeshare)

Coefficients:
                           Estimate Std. Error  z value Pr(>|z|)    
(Intercept)                2.693688   0.009720  277.124  < 2e-16 ***
workingday                 0.014665   0.001955    7.502 6.27e-14 ***
temp                       0.785292   0.011475   68.434  < 2e-16 ***
weathersitcloudy/misty    -0.075231   0.002179  -34.528  < 2e-16 ***
weathersitlight rain/snow -0.575800   0.004058 -141.905  < 2e-16 ***
weathersitheavy rain/snow -0.926287   0.166782   -5.554 2.79e-08 ***
mnthFeb                    0.226046   0.006951   32.521  < 2e-16 ***
mnthMarch                  0.376437   0.006691   56.263  < 2e-16 ***
mnthApril                  0.691693   0.006987   98.996  < 2e-16 ***
mnthMay                    0.910641   0.007436  122.469  < 2e-16 ***
mnthJune                   0.893405   0.008242  108.402  < 2e-16 ***
mnthJuly                   0.773787   0.008806   87.874  < 2e-16 ***
mnthAug                    0.821341   0.008332   98.573  < 2e-16 ***
mnthSept                   0.903663   0.007621  118.578  < 2e-16 ***
mnthOct                    0.937743   0.006744  139.054  < 2e-16 ***
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Poisson regression - Bikeshare dataset
plot(x = 1:12, y = c(0, glmBikeshare$coefficients[7:17]), type = 'o',1
     xlab = "month", ylab = "coefficient", xaxt = "n")2
axis(1, at=1:12, labels=substr(month.name, 1, 1))3
plot(x = 1:24, y = c(glmBikeshare$coefficients[18:40], 0), type = 'o',4
     xlab = "hour", ylab = "coefficient")5
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Generalised linear models
Linear
Regression

Logistic Regression Poisson
Regression

Generalised
Linear Models

Type of Data Continuous Binary (Categorical) Count Flexible

Use Prediction of
continuous
variables

Classification Prediction of
the number of
events

Flexible

Distribution of Y Normal Bernoulli (Binomial
for multiple trials)

Poisson Exponential
Family

Link Function
Name

Identity Logit Log Depends on the
choice of
distribution

Link Function
Expression

Depends on the
choice of
distribution

E[Y ∣X] Xβ ​1+eXβ
eXβ eXβ g (Xβ)−1

η(μ) = μ η(μ) = log ​( 1−μ
μ ) η(μ) = log(μ)
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