family of model

Generalised Linear Models

ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications

Lecture Outline

- Introduction to GLMs
- The components of a GLM
- Fit a GLM

Generalised linear models

- The linear, logistic and Poisson regression model have common properties and can be summarised in a unified framework
- Framework consists of a systematic and distribution part:
- Systematic component: describes the mean structure
- 2. Stochastic component: describes the individual variation of the response around the mean
- This class of models is called Generalised Linear Models (GLM)
- The class of GLMs has played a key role in the development of statistical modelling and of associated software
- The class of GLMs has numerous application in Actuarial Science

3. Link Cenetion

Generalised linear models

		Linear Regression	Logistic Regression	Poisson Regression	Generalised Linear Models
_	Type of Data	Continuous	Binary (Categorical)	Count	Flexible
_	Use	Prediction of continuous variables	Classification	Prediction of the number of events	Flexible
_	Distribution of Y	Normal	Bernoulli (Binomial for multiple trials)	Poisson	Exponential Family
	$\mathbb{E}[Y X]$	$X\beta$	$\frac{e^{X\beta}}{1+e^{X\beta}}$	e^{Xeta}	$g^{-1}(Xeta)$
	Link Function Name	Identity	Logit	Log	Depends on the choice of distribution
_	Link Function Expression	$\eta(\mu)=\mu$	$\eta(\mu) = \log\left(rac{\mu}{1-\mu} ight)$	$\eta(\mu) = \log(\mu)$	Depends on the choice of distribution

Insurance Applications

- Application are numerous
 - Mortality Modelling
 - Rate making (Modelling Claims Frequency and severity)
 - Loss reserving
- Models used are often *multiplicative*, hence linear on the <u>log-scale</u>.
- Claim numbers are generally Poisson, or Poisson with over-dispersion. These distributions are not symmetric and their variance is proportional to mean.
- Claim amounts are skewed to the right densities, shaped like for example Gamma.

When to use a GLM?

Use GLMs when When constant (linear regression)

• variance not constant and/or | Can use GLM for almost anything

• when errors not normal. (it's more important to identify which GLM to use)

Cases when we might use GLMs include: when response variable is

- count data expressed as proportions (e.g. logistic regression)
- count data that are not proportions (e.g. log-linear models of counts)
- binary response variable (e.g. dead or <u>alive</u>)
- data on time to death where the variance increases faster than linearly with the mean (e.g. time data with gamma errors).

Many basic statistical methods (regression, *t*-test) assume constant variance but often untenable. Hence value of GLMs.

Error structure

Many kinds of data have non-normal errors

- errors that are strongly skewed
- errors that are kurtotic theavy tailed
- errors that are strictly bounded (as in proportions)
- errors that cannot lead to negative fitted values (as in counts)

Error structure

GLM allows specification of a variety of different error distributions:

- · Poisson errors, useful with count data bike share example of W4
- binomial errors, useful with data on proportions Assignment
- gamma errors, useful with data showing a constant coefficient of variation
- exponential errors, useful with data on time to death (survival analysis)

Lecture Outline

- Introduction to GLMs
- The components of a GLM
- Fit a GLM

The components of a GLM

- A Generalised Linear Model (GLM) has three components:
 - 1. A *systematic component* allowing for inclusion of covariates or explanatory variables (captures location). (XB)
 - 2. A stochastic component specifying the error distributions (captures spread) distribution
 3. A parametric link function linking the stochastic and systematic
 - components by associating a function of the mean to the covariates.

The Systematic Component

- The systematic component is a linear predictor η , that is, a function (with linear coefficients) of the covariates, sometimes called explanatory variables.
- Consider the following linear (in its coefficients) model:

; the city of
$$-\underline{\eta}_i = \underline{\mathrm{x}}_i eta = eta_0 + eta_1 x_{i1} + \cdots + eta_p x_{ip},$$

where x_i is the *i*'th row of X and there are p predictor variables (or covariates) affecting the response.

• The mean μ_i (location) of the response will depend on η_i in that

• The mean
$$\mu_i$$
 (location) of the response will depend on η_i in that
$$\mu_i = g(\underline{\mu}_i)$$

$$\mu_i = g^{-1}(\mathbf{x}_i\beta) = g^{-1}(\eta_i),$$
 Linking expectation of γ where g is called the $link$ function (unsurprisingly!).

The Stochastic Component

- We are now interested in building spread around our linear model for the mean
- We will use a the **exponential dispersion family**.
- We say *Y* comes from an exponential dispersion family if its density has the form

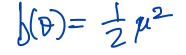
$$f_Y(y) = \exp\left[rac{y heta - \underline{b}\left(heta
ight)}{\psi} + \underline{c}\left(y;\psi
ight)
ight].$$

Here $\underline{\theta}$ and $\underline{\psi}$ are location and scale parameters, respectively. Note in the book they use different representation but they are equivalent.

- θ known as canonical or natural parameter of the distribution.
- $b(\theta)$ and $c(y; \psi)$ are known functions and specify the distribution

Examples of Exponential Dispersion Families

• Normal $N(\mu, \sigma^2)$ with $\theta = \mu$ and $\psi = \sigma^2$. $|(\theta) = \frac{1}{2}\mu^2$ C is a constant



- Gamma (α, β) with $\theta = -\beta/\alpha = -\frac{1}{\mu}$ and $\psi = 1/\alpha$.
- Inverse Gaussian (α, β) with $\theta = -\frac{1}{2}\beta^2/\alpha^2 = -\frac{1}{2\mu^2}$ and $\psi = \beta/\alpha^2$.
- Poisson(μ) with $\theta = \log \mu$ and $\psi = 1$.
- Binomial(m, p) with $\theta = \log [p/(1-p)] = \log [\mu/(m-\mu)]$ and $\psi = 1$.
- Negative Binomial(r, p) with $\theta = \log(1 p) = \log(\mu p/r)$ and $\psi = 1$.

Example - Gamma

The gamma(α , β) distributions belong to the exponential dispersion families. Its density is

$$f(y) = \frac{\beta^{\alpha} y^{\alpha - 1} e^{-\beta y}}{\Gamma(\alpha)}$$

$$= \exp\left(-\log \Gamma(\alpha) + \alpha \log \beta + (\alpha - 1) \log y - \beta y\right)$$

$$= \exp\left(\frac{-\frac{\beta}{\alpha} y - \left(-\log(\frac{\beta}{\alpha})\right)}{\frac{1}{\alpha}} + \frac{\log \frac{1}{1/\alpha}}{\frac{1}{\alpha}} - \log \Gamma\left(\frac{1}{1/\alpha}\right) + \left(\frac{1}{1/\alpha} - 1\right) \log y\right)$$

$$= \exp\left(\frac{y\theta - b(\theta)}{\psi} + c(y; \psi)\right)$$

where
$$\theta = -\frac{\beta}{\alpha}$$
, $\psi = \frac{1}{\alpha}$, $b(\theta) = -\log(-\theta)$, $c(y;\psi) = \frac{\log \frac{1}{\psi}}{\psi} + (\frac{1}{\psi} - 1)\log y - \log \Gamma(\frac{1}{\psi})$

Some Properties of the exponential family

• The moment generating function can be expressed as

$$M_Y(t) = \mathbb{E}(\mathrm{e}^{Yt}) = \exp\left[rac{b\left(heta + t\psi
ight) - b\left(heta
ight)}{\psi}
ight].$$

• The cumulant generating function immediately follows:

$$\kappa_Y(t) = \log M_Y(t) = rac{b(heta + t\psi) - b(heta)}{\psi}.$$

which can be used to determine

$$lacksquare$$
 mean: $\kappa_1=\left.rac{\partial \kappa_Y(t)}{\partial t}
ight|_{t=0}=lacksquare{b'(heta)}=\mathbb{E}(Y)=\mu$

• variance:
$$\kappa_2=\left.\frac{\partial^2\kappa_Y(t)}{\partial t^2}\right|_{t=0}=\psi b''(\theta)=\mathrm{Var}(Y)$$

Mean

$$E[X] = \frac{\alpha}{\beta} \quad \times \sim Canna(\alpha, \beta)$$

Notice $\mu = b'(\theta)$ and so mean μ depends on location parameter θ or θ depends on μ . So we sometimes write $\theta = \theta(\mu)$. $\theta = (b')^{-1}(\mu)$

Examples

- Normal $N(\mu, \sigma^2)$: $\theta = \mu$ and hence $\theta(\mu) = \mu$.
- Gamma (α, β) $\theta = -\beta/\alpha = -\frac{1}{\mu}$ and hence $\theta(\mu) = -\frac{1}{\mu}$.
- Inverse Gaussian (α, β) : $\theta = -\frac{1}{2}\beta^2/\alpha^2 = -\frac{1}{2\mu^2}$ and hence $\theta(\mu) = -\frac{1}{2\mu^2}$.
- Poisson(μ) with $\theta = \log \mu$ and hence $\theta(\mu) = \log \mu$.
- Binomial(m,p) with $\theta = \log[p/(1-p)] = \log[\mu/(m-\mu)]$ and hence $\theta(\mu) = \log[\mu/(m-\mu)]$.
- Negative Binomial(r,p) with $\theta = \log(1-p) = \log(\mu p/r)$ and hence $\theta(\mu) = \log(1-p) = \log(\mu p/r)$.

$$p = E[X] = m.p \quad \text{if} \quad X \sim Ban(m,p)$$

Example

For the gamma(α , β) random variable Y, find $\theta(\mu)$.

Answer: The density can be written as

$$f(y) = \exp\left(rac{y heta - b(heta)}{\psi} + c(y;\psi)
ight)$$

where
$$\theta=-rac{eta}{lpha},\,\psi=rac{1}{lpha},\,b(heta)=-\log(- heta),$$
 $c(y;\psi)=rac{\lograc{1}{\psi}}{\psi}+(rac{1}{\psi}-1)\log y-\log\Gamma(rac{1}{\psi}).$ Then

$$\mu=\mathbb{E}[Y]=b'(heta)=-rac{1}{ heta}.$$

Therefore,

$$heta(\mu) = heta = -rac{1}{\mu}$$

Variance Function

• The variance is sometimes expressed as $Var(Y) = \psi V(\mu)$ where clearly

$$V(\mu) = b''(\theta(\mu))$$

and is called the variance function.

Examples

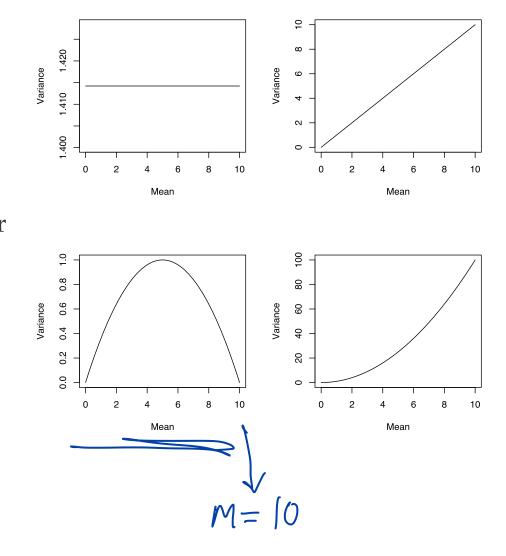
- Normal $N(\mu, \sigma^2)$ with $\underline{V}(\mu) = 1$ Variance is constant with V.

 Gamma (α, β) with $V(\mu) = \mu^2$ Variance is quado with V.

 Inverse Gaussian (α, β) with $V(\mu) = \mu^3$
 - Inverse Gaussian(α, β) with $V(\mu) = \mu^3$
- Poisson(μ) with $V(\mu) = \mu$
- Binomial(m, p) with $V(\mu) = \mu(1 \mu/m)$
- Negative Binomial(r, p) with $V(\mu) = \mu(1 + \mu/r)$

Mean-variance relationship

- With linear regression, central assumption is constant variance (top left-hand graph)
- Count data: response is integer, lots of zeros—variance may increase linearly with mean (top right)
- Proportion data: count of number of failures of events or successes, variances will be inverted Ushape (bottom left)
- If response follows gamma distribution (e.g. time-to-death data), variance increases faster than linearly with mean (bottom right).



Example

Show that the variance function of Gamma(α, β) GLM is $V(\mu) = \mu^2$.

Answer:

$$f(y) = \exp\left(rac{y heta - b(heta)}{\psi} + c(y;\psi)
ight)$$

where
$$\theta = -\frac{\beta}{\alpha}$$
, $\psi = \frac{1}{\alpha}$, $b(\theta) = -\log(-\theta)$.

Note that $\mu = \mathbb{E}[Y] = b'(\theta) = -\frac{1}{\theta}$, and therefore

$$heta=-rac{1}{\mu}.$$

So
$$V(\mu) = b''(\theta) = \frac{1}{\theta^2} = \mu^2$$
.

The link between both components

• The mean μ_i'' is connected to the linear predictor $\mathbf{x}_i\beta$ through

$$\underline{\mu_i} = \underline{g^{-1}ig(\mathrm{x}_ietaig)} = g^{-1}(\eta_i) \quad ext{or} \quad \overline{\eta_i} = g(\mu_i)$$
 is called the *link* function.

where g is called the *link* function.

• If $g(\cdot) \equiv \theta(\cdot)$, that is, if

$$oldsymbol{ heta_i=\eta_i,}$$

we say we have a canonical link, or natural link function.

$$p \iff X\beta$$

Renamber, we know
$$p = b'(\theta) \quad b \text{ given } Y$$

$$\Theta = (b')^{-1}(p)$$

$$Q = (b')^{-1}(p)$$
Canonical link

Canonical Link Functions

 $Y = X\beta + \varepsilon$

ECYJ= p.

• Some canonical links are:

			$\lambda = \lambda^{2}$
Distribution	Canonical Link $g(\mu)$	Called	
Normal	$g(\mu) = heta(\mu) = \mu$	Identity	_
Poisson	$g(\mu) = \theta(\mu) = \log \mu$	Log link	_
Binomial	$g(\mu) = heta(\mu) = \log\left(rac{\mu}{m-\mu} ight)$	Logit	_
Gamma	$g(\mu)= heta(\mu)=-1/\mu$	Reciprocal	
	$log(\frac{p}{1-p}) = X\beta$	$\log(x) = x$	B-

Summary of GLM components

A GLM models an n-vector of independent response variables, \mathbf{Y} using

1. **Random component:** For each observation y_i we use an exponential dispersion model

$$f(y_i; heta_i) = \exp\left[rac{y_i heta_i - b\left(heta_i
ight)}{\psi} + c\left(y_i;\psi
ight)
ight]$$

where θ_i is the canonical parameter, ψ is a dispersion parameter and function $b(\cdot)$ and $c(\cdot, \cdot)$ are known.

- 2. **Sytematic component:** $\eta_i = \mathbf{x}_i \beta = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$, the linear predictors with $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ regression parameters.
- 3. Parametric **link function**: the link function $g(\mu_i) = \eta_i = \mathbf{x}_i \beta$ combines the linear predictor with the mean $\mu_i = \mathbb{E}[Y_i]$. The link is called canonical if $\theta_i = \eta_i$

Lecture Outline

- Introduction to GLMs
- The components of a GLM
- Fit a GLM

Procedure

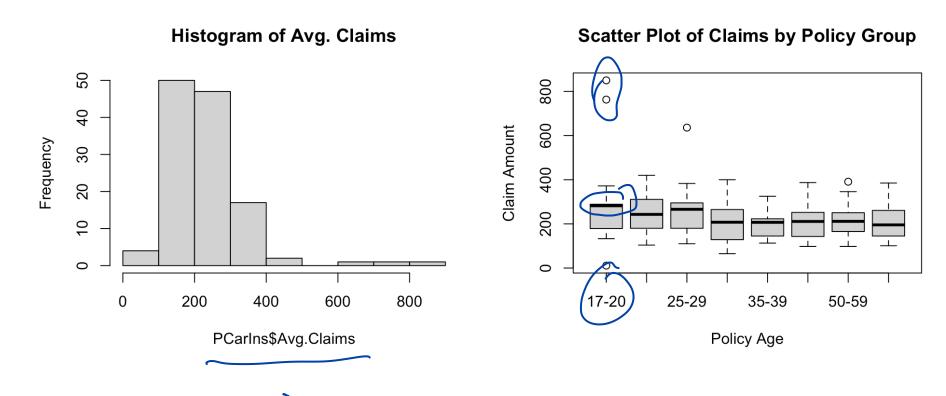
Constructing a GLM consists of the following steps:

- Choose a response distribution $f(y_i)$ and hence choose $b(\theta)$.
- Choose a link $g(\mu)$. Can start at canonical
- Choose explanatory variables x in terms of which $g(\mu)$ is to be modeled. Collect of
- Collect observations y_1, \dots, y_n on the response y and corresponding values - Data x_1, \dots, x_n on the explanatory variables x.
- Fit the model by estimating β and, if unknown, ψ . Estimate
- Given the estimate of β , generate predictions (or fitted values) of y for different settings of *X* and examine how well the model fits. Also the estimated value of β will be used to see whether or not given explanatory variables are important in determining μ . 5. Rus almont.
 6. Inference / prediction

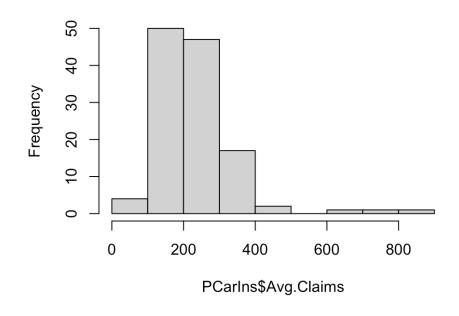
- Consider the data used in McCullagh and Nelder (1989), page 299, related to motor claims. So the responses are claims.
- There are three factors used:
 - policyholder age (PA), with 8 levels, 17-20, 21-24, 25-29, etc.
 - car group (CG), with 4 levels, A, B, C, and D.
 - vehicle age (VA), with 4 levels, 0-3, 4-7, 8-9, 10+
- There are a total of 123 different cells of data.

· Policy age

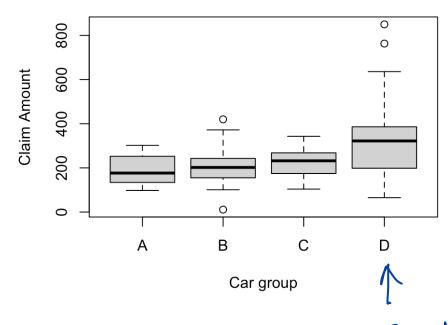

```
library(tidyverse)
  3 PCarIns <- read_csv("PrivateCarIns1975-Data.csv")</pre>
  4 PCarIns <- PCarIns %>% filter(Numb.Claims>0) # remove the 3 categories with no claims
  6 str(PCarIns)
spc_tbl_ [123 x 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ Pol.Age
           : num [1:123] 1 1 1 1 1 1 1 1 1 1 ...
$ Cpol.Age : chr [1:123] "17-20" "17-20" "17-20" "17-20" ...
$ Car.Group : chr [1:123] "A" "A" "A" "A" ...
 $ Veh.Age : num [1:123] 1 2 3 4 1 2 3 4 1 2 ...
 $ Cveh.Age : chr [1:123] "0-3" "4-7" "8-9" "10+" ...
 $ Avg.Claims : num [1:123] 289 282 133 160 372 249 288 11 189 288 ...
$ Numb.Claims: num [1:123] 8 8 4 1 10 28 1 1 9 13 ...
 - attr(*, "spec")=
  .. cols(
      Pol.Age = col double(),
      Cpol.Age = col character(),
      Car.Group = col character(),
      Veh.Age = col double(),
      Cveh.Age = col_character(),
      Avg.Claims = col_double(),
      Numb.Claims = col double()
- attr(*, "problems")=<externalptr>
   1 # convert to categorical
  2 PCarIns <- PCarIns %>%
       mutate(Cpol.Age = factor(Cpol.Age),
              Car.Group = factor(Car.Group),
              Cveh.Age = factor(Cveh.Age))
  5
```

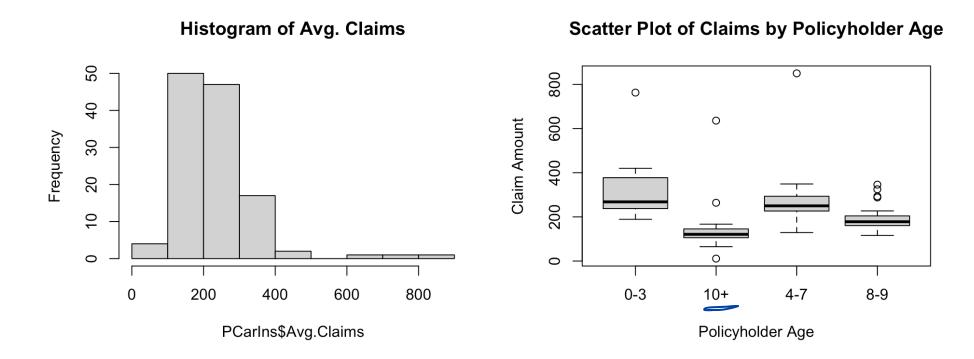



Histogram of Avg. Claims



Scatter Plot of Claims by Car Group





How could we model the relationship between claim Amounts and the covariates?

Maximum Likelihood Estimation

- The parameters in a GLM are estimated using maximum likelihood.
- For each observation y_i the contribution to the likelihood is

$$f(y_i; heta_i) = \exp\left[rac{y_i heta_i - b\left(heta_i
ight)}{\psi} + c\left(y_i;\psi
ight)
ight].$$

• Given vector \mathbf{y} , an observation of \mathbf{Y} , MLE of β is possible. Since the y_i are mutually independent, the likelihood of β is

$$L(eta) = \prod_{i=1}^n f(y_i; heta_i).$$

Maximum Likelihood Estimation

So for n independent observations y_1, y_2, \ldots, y_n , we have

$$L(\mathbf{y}; \mu) = \prod_{i=1}^n \exp\left[rac{y_i heta_i - b(heta_i)}{\psi} + c\left(y_i; \psi
ight)
ight].$$

Take log to obtain the log-likelihood as

$$\ell(\mathbf{y};\mu) = \sum_{i=1}^n \left[rac{y_i heta_i - b(heta_i)}{\psi} + c(y_i;\psi)
ight].$$

Example

Consider a GLM model with the canonical link and gamma distribution. The density of response variable is

$$f(y) = \exp\left(rac{y heta - b(heta)}{\psi} + c(y;\psi)
ight)$$

with $b(\theta) = -\log(-\theta)$.

Moreover, with canonical link, we have $\theta_i = \theta(\mu_i) = g(\mu_i) = x_i \beta$.

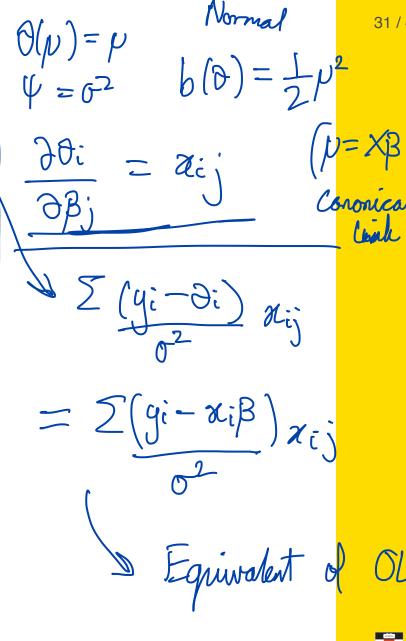
The log-likelihood is

$$\ell(\mathbf{y};\mu) = \sum_{i=1}^n \left(rac{y_i heta_i - b(heta_i)}{\psi} + c(y_i;\psi)
ight)$$

$$egin{aligned} rac{\partial}{\partialeta_j}\ell(\mathbf{y};\mu) &= \sum_{i=1}^n rac{y_i - b'(heta_i)}{\psi}rac{\partial heta_i}{\partialeta_j} \ &= \sum_{i=1}^n rac{y_i - (-rac{1}{ heta_i})}{\psi}x_{ij} \end{aligned} egin{aligned} rac{\partial heta_i}{\partialeta_j} &= \chi_i \hat{y}_i + \frac{1}{\chi_ieta_j} \hat{y}_i \end{pmatrix} \ &= \sum_{i=1}^n rac{y_i + rac{1}{\chi_ieta_i}}{\psi}x_{ij} \end{aligned}$$

Solving $\sum_{i=1}^n \frac{y_i + \frac{1}{\mathbf{x}_i \beta}}{\psi} x_{ij} = 0$ for all j gives the MLE of β .

$$\frac{1}{2} \left(\frac{y_i + x_i \beta}{\psi(x_i \beta)} \right) \cdot \chi_{ij}$$



Case Study: Motor claims illustration - Gamma GLM

```
glm∮Avg.<u>Cla</u>ims~ Cpol.Age + Car.Group + Cveh.Age, weights=Numb.Claims,
     pcarins.glm <-/
                        family=Gamma, data = PCarIns)
   3 summary(pcarins.glm)
Call:
glm(formula = Avg.Claims ~ Cpol.Age + Car.Group + Cveh.Age, family = Gamma,
    data = PCarIns, weights = Numb.Claims)
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               3.411e-03 4.179e-04
                                      8.161 6.31e-13 ***
Cpol.Age21-24
               1.014<u>e</u>-04 4.363e-04
                                      0.232 0.816664
€pol.Age25-29
               3.500e-04 4.124e-04
                                      0.849 0.397942
pol.Age30-34
               4.623e-04
                          4.106e-04
                                      1.126 0.262652
Cpol.Age35-39
               1.370e-03 4.192e-04
                                      3.268 0.001447 **
pol.Age40-49
               9.695e-04 4.046e-04
                                      2.396 0.018284 *
Cpol.Age50-59
               9.164e-04 4.080e-04
                                      2.246 0.026691 *
Cpol.Age60+
               9.201e-04 4.157e-04
                                      2.213 0.028958 *
Car.GroupB
               3.765e-05
                         1.687e-04
                                      0.223 0.823776
              -6.139e-04 1.700e-04
Car.GroupC
                                     -3.611 0.000463 ***
Car.GroupD
              -1.421e-03 1.806e-04 -7.867 2.84e-12 ***
Cveh.Age10+
               4.154e-03
                          4.423e-04
                                      9.390 1.05e-15 ***
Cveh.Age4-7
               3.663e-04
                          1.009e-04
                                      3.632 0.000430 ***
Cveh.Age8-9
               1.651e-03
                         2.268e-04
                                      7.281 5.45e-11 ***
```


The "Null Model" and "Full Model"

- With a GLM we estimate Y_i by $\hat{\mu}_i$
- For n data points we can estimate up to n parameters
- Null model: the systematic component is a constant term only.

$$\hat{\mu}_i = ar{y}, \quad ext{for all} \quad i = 1, 2, \dots, n$$
 "No model",

- Only one parameter \rightarrow too simple
- Full or saturated model: Each observation has its own parameter.

$$\hat{\mu}_i = y_i, \quad ext{for all} \quad i = 1, 2, \dots, n \quad - \quad ext{`perfect model''}$$

 All variations can be explained by the covariates → no explanation of data possible

Deviance and Scaled Deviance

The log-likelihood in the full model gives , full model.

$$\ell(\mathbf{y};\mathbf{y}) = \sum_{i=1}^{n} \left[\frac{y_i \widetilde{ heta_i} - b(\widetilde{ heta_i})}{\psi} + c(y_i;\psi) \right]$$

where $\widetilde{\theta}_i$ are the canonical parameter values corresponding to $\mu_i = y_i$ for all $i = y_i$ $1, 2, \ldots, n$.

Deviance and Scaled Deviance
$$b(0) = \frac{1}{2} \rho^2$$
 $\psi = 0^2$
• Let $\hat{\mu}$ denote the M.L.E. of chosen model. $\theta(\rho) = \frac{1}{2} \rho^2$

- One way of assessing the fit of a given model is to compare it to the model with the "closest" possible fit: the full model
- The **likelihood ratio criterion** compares a model with its associated full model.

$$-2\log\left[\frac{L(\mathbf{y};\widehat{\boldsymbol{\mu}})}{L(\mathbf{y};\mathbf{y})}\right] = 2[\ell(\mathbf{y};\mathbf{y}) - \ell(\mathbf{y};\widehat{\boldsymbol{\mu}})] = 2\sum_{i=1}^{n}\left[\frac{y_{i}(\widetilde{\theta}_{i} - \widehat{\theta}_{i})}{\psi} - \frac{b(\widetilde{\theta}_{i}) - b(\widehat{\theta}_{i})}{\psi}\right]$$

$$= \frac{D(y,\widehat{\boldsymbol{\mu}})}{\psi}$$

$$di$$

- $D(y, \widehat{\mu})$ is called the **deviance** and $D(y, \widehat{\mu})/\psi$ the **scaled deviance**.
- Deviance plays much the same role for GLMs that RSS plays for ordinary linear models. (For ordinary linear models, deviance is RSS.)

Example

The scaled deviance of a gamma(α , β) is

$$egin{aligned} -2\log\left[rac{L(\mathbf{y};\hat{\mu})}{L(\mathbf{y};\mathbf{y})}
ight] &= 2\sum_{i=1}^n \left[rac{y_i(\widetilde{ heta}_i-\widehat{ heta}_i)}{\psi} - rac{b(\widetilde{ heta}_i)-b(\widehat{ heta}_i)}{\psi}
ight] \ &= 2\sum_{i=1}^n \left[rac{y_i1/\widehat{\mu}_i-1/y_i)}{\psi} - rac{\log y_i - \log \widehat{\mu}_i}{\psi}
ight] \ &= rac{2}{\psi}\sum_{i=1}^n \left[rac{y_i-\widehat{\mu}_i}{\widehat{\mu}_i} - \log(y_i/\widehat{\mu}_i)
ight]. \end{aligned}$$

Exponential Dispersions and their Deviances

We drop the subscript $i = 1, 2, \ldots, n$

Deviances are:

Distribution	Deviance $D(y,\hat{\mu})$
Normal	$\sum (y-\hat{\mu})^2$
Poisson	$2\sum[y\log(y/\hat{\mu})-(y-\hat{\mu})]$
Binomial	$2\sum[y\log(y/\hat{\mu})+(m-y)\log((m-y)/(m-\hat{\mu}))]$
Gamma	$2\sum[-\log(y/\hat{\mu})+(y-\hat{\mu})/\hat{\mu}]$
Inverse Gaussian	$\sum (y-\hat{\mu})^2/(\hat{\mu}^2y)$

Scaled Deviance as a Measure of Model Fit

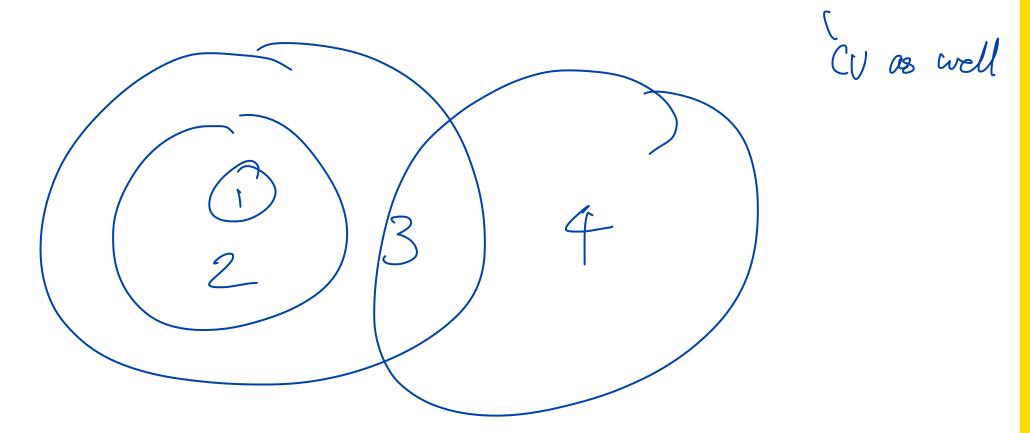
• The scaled deviance is actually a measure of the fit of the model. It has approximately (asymptotically true) a chi-squared distribution with degrees of freedom equal to the number of observations minus the number of estimated parameters.

$$egin{pmatrix} rac{D(y,\hat{\mu})}{\psi}
ightarrow \chi^2_{n-(p+1)} \quad ext{when} \quad n
ightarrow \infty \ \end{pmatrix}$$

- Thus, we can use the scaled deviance usually for comparing models that are nested (one model is a subset of the other) by looking at the difference in the deviance and comparing it with the chi-squared table.
- Reminder: a significant value (at the 5% level) for a χ^2 distribution with ν degrees of freedom is approximately 2ν .

Model selection

- Nested models: Wald test, score test, likelihood ratio test (drop-in deviance test)
- Non-Nested models: Use $\underline{AIC} = -2\ell(\mathbf{y}; \widehat{\mu}) + 2d$ (the smaller the better)



Model selection (Nested models)

• Model 1:
$$\eta = eta_0 + eta_1 x_1 + \ldots eta_q x_q$$
,

• Model 1:
$$\eta=eta_0+eta_1x_1+\ldotseta_qx_q$$

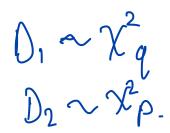
• Model 2: $\eta=eta_0+eta_1x_1+\ldotseta_qx_q+\underbrace{eta_{q+1}x_{q+1}+\ldotseta_px_p}$

Is Model 2 an improvement over Model 1?

$$H_0: \underline{eta_{q+1}=\cdots=eta_p=0}$$

 H_a : at least one β_i is non-zero

Model selection (Nested models)



- Consider two models,
 - Model 1: q parameters, with scaled deviance D_1 ;
 - Model 2: p parameters (p > q), with scaled deviance D_2 .
- Model 2 is a significant improvement over Model 1 (a more parsimonious model), if $D_1 D_2 >$ the critical value obtained from a $\chi^2(p-q)$ distribution.
- Since

$$\mathbb{P}\left[\chi^2(
u)>2
u
ight]pprox 5\%,$$

the following rule of thumb can be used as an approximation:

model 2 is preferred if $D_1 - D_2 > 2(p - q)$.

Case Study: Motor claims illustration - Null Model

Case Study: Motor claims illustration - Deviance analysis Order mattes with ANOVA!

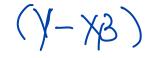
```
1 #analysis of the deviance table
    2 print(anova(pcarins.glm, test="Chi"))
  Analysis of Deviance Table
                                                                          649.87 82.18-2x7
  Model: Gamma, link: inverse
  Response: Avg.Claims
  Terms added sequentially (first to last)
          Df Deviance Resid. Df Resid. Dev Pr(>Chi)
                                 649.87
                                 567.69 3.801e-12 ***
                                 339.38 < 2.2e-16 ***
  Cveh.Age
                          109
                                 124.78 < 2.2e-16 ***
                                                                         -At least one Bi of
               0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                                                                               MON-ZEFO -
Model with Good and Car. group-
                                                                        567.69
```

Continued

The scaled deviance statistics are provided below:

	Model	Deviance	First Diff.	d.f.	Mean Deviance	
-	1	649.9				
-	PA	567.7	82.2	7	11.7	
-	PA+CG	339.4	228.3	3	76.1	
-	PA+CG+VA	124.8	214.7	3	71.6	
70	+PA·CG	90.7	34.0	21	$1.62 \times -$ This is not 80 0.94 \times on the present	ansfecant
و	+PA·VA	71.0	19.7	21	0.94 x cathe prese	ree of
-	+CG·VA	65.6	5.4	9	0.60 PA, Chi and	VA
-	Complete	0.0	65.6	58	1.13	

Residuals in GLMs



 $(\gamma - \chi_{\beta}) \qquad \qquad \stackrel{\wedge}{\lesssim} d^{2} \sim \chi_{\eta-(\rho+1)}^{2}$

- Residuals are a primary tool for assessing how well a **model fits** the data.
- They can also help to detect the form of the variance function and to diagnose problem observations.
- We consider three different kinds of residuals:
 - <u>deviance residuals</u>: $r_i^D = \operatorname{sign}(y_i \widehat{\mu}_i) \sqrt{d_i}$ where d_i is contribution of ith observation to the scaled deviance (drawing on idea that deviance is akin to RSS).
 - Pearson residuals: $r_i^P = \frac{y_i \widehat{\mu}_i}{\sqrt{V(\widehat{\mu}_i)}}$.
 - response residuals: they are simply $y_i \widehat{\mu}_i$.

Residuals in GLMs (continued)

- If the model is correct and the sample size n is large, then the (scaled) deviance is approximately $\chi^2_{n-(p+1)}$.
- The expected value of the deviance is thus n-(p+1), and one expects each case to contribute approximately $(n-(p+1))/n \approx 1$ to the deviance. If $|d_i|$ is much greater than 1, then case i is contributing too much to the deviance (contributing to lack of fit), indicating a departure from the model assumptions for that case.
- Typically deviance residuals are examined by plotting them against fitted values or explanatory variables.

Case Study: Motor claims illustration - Residual

1 plot(pcarins.glm, which = 1:2)

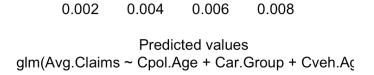
018

Pearson Residuals

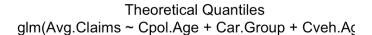
Q-Q Residuals

|Std. Deviance resid.|
| Std. Deviance resid.|
| Company of the state of the stat

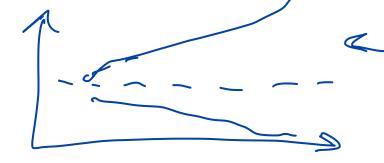
2.0



Residuals vs Fitted



1.5

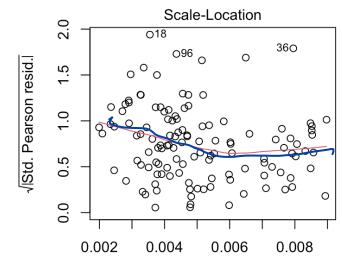


— lack of good fit

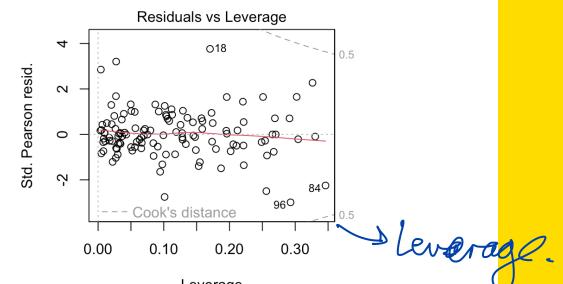
0.5

Case Study: Motor claims illustration - Residual

1 plot(pcarins.glm, which = c(3,5))



Predicted values glm(Avg.Claims ~ Cpol.Age + Car.Group + Cveh.Ag



Leverage glm(Avg.Claims ~ Cpol.Age + Car.Group + Cveh.Aç

