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Lecture Outline

e Introduction to GLMs
e The components of a GLM
o Fita GLM
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Generalised linear models

o The linear, logistic and Poisson regression model have common properties

and can be summarised in a unified framework
e Framework consists of a systematic and distribution part:

)%6 — [, = Systematic component: describes the mean structure Wj;" C}p é

9 .= Stochastic component: describes the individual variation of the response
3. Lk around the mean

W e This class of models is called Generalised Linear Models (GLM)

[ LUJL/ o The class of GLMs has played a key role in the development of statistical
bl modelling and of associated software

m o The class of GLMs has numerous application in Actuarial Science

)

-y
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Generalised linear modelséf

CF
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Linear Logistic Regression  Poisson Generalised
Regression Regression \ Linear Models
Type of Data Continuous Binary (Categorical)  Count \ Flexible
Use Prediction of Classification Prediction of |Flexible
continuous the number
variables of events
7T
Distribution of Y = Normal Bernoulli (Binomial ~ Poisson <Exponentia1
for multiple trials) il
5 ~
E[Y|X] Xp N eX? g 1 (XB)
Link Function Identity Logit Log Depends on the
Name choice of
distribution
Link Function n(p) = p n(p) = log (ﬁ) n(p) = Depends on the
Expression log(u) choice of
distribution

-y
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Insurance Applications

e Application are numerous
= Mortality Modelling
= Rate making (Modelling Claims Frequency and severity)
= [oss reserving
« Models used are often multiplicative, hence linear on the log-scale.

o Claim numbers are generally Poisson, or Poisson with over-dispersion. These
distributions are not symmetric and their variance is proportional to mean.

o Claim amounts are skewed to the right densities, shaped like for example
Gamma.

4/48
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When to use a GLM?
Use GLMs when or Conglidl (Lrosr "Oﬁ/’%ﬂ")

e variance not constan{and / or

o when errors not normal. (3 W [ Los W>

Cases when we might use GLMs include: when response variable is

o count data expressed as proportions (e.g. logistic regression)
« count data that are not proportions (e.g. log-linear models of counts)
e binary response variable (e.g. dead or alive)

o data on time to death where the variance increases faster than linearly with
the mean (e.g. time data with gamma errors).

Many basic statistical methods (regression, t-test) assume constant variance—
but often untenable. Hence value of GLMs.

5/48
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Error structure

Many kinds of data have non-normal errors

errors that are strongly skewed
errors that are kurtotic — W M&/

errors that are strictly bounded (as in proportions)

errors that cannot lead to negative fitted values (as in counts)

6/48
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Error structure

GLM allows specification of a variety of different error distributions:

e Poisson errors, useful with count data
 binomial errors, useful with data on proportions
« gamma errors, useful with data showing a constant coefficient of variation

o exponential errors, useful with data on time to death (survival analysis)

7148
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Lecture Outline

e Introduction to GLMs
e The components of a GLM
e Fita GLM
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The components of a GLM

o A Generalised Linear Model (GLM) has three components:

1. A systematic component allowing for inclusion of covariates or explanatory
variables (captures location). — X B.

' AN
2. A stochastic component specifying the error distributions (captures spread) ~ M UP /’

3. A parametric link function linking the stochastic and systematic
components by associating a function of the mean to the covariates.

V &e—> XB
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The Systematic Component

o The systematic component is a linear predictor 7, that is, a function (with
linear coefficients) of the covariates, sometimes called explanatory variables.

 Consider the following linear (in its coefficients) model:

n; = X8 = Bo+ Bixin + -+ + BpTip,

where x; is the i'th row of X and there are p predictor variables (or covariates)
affecting the response.

o The mean ; (location) of the response will depend on #; in that

m = g(1)
pi=g " (x:8) = g ' (m),

where g is called the link function (unsurprisingly!).
HELZ:\£,><:83:'/)E )JE é;__%E, >9g (2?;‘:>

9/48
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X~ Exp (1)

fo)= re

« We are now interested in building spread around our linear model for the
mean

AL

The Stochastic Component

« We will use a the exponential dispersion family.

e We say Y comes from an exponential dispersion family if its density has the
form

y0 —b(0)
(0

Here 6 and 1 are location and scale parameters, respectively. Note in the book
they use different representation but they are equivalent.

fr(y) = exp +c(y;9)| -

0 known as canonical or natural parameter of the distribution.

e b(0) and ¢ (y;¢) are known functions and specify the distribution

bi) = Lp* o memal  y=0r B,

10/48
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Examples of Exponential Dispersion Families

« Normal N (p,0?) with 8 = pand ¢ = o2,

o Gamma(a, 8) with§ = —8/a = —i and ¥ = 1/a.

» Inverse Gaussian(e, ) with 6 = —3%/a® = —5; and ¢ = §/a’.

o Poisson(u) with 8 = logu and ¥ = 1.

e Binomial(m, p) with 8 = log [p/ (1 — p)] = log [u/(m — p)] and ¢ = 1.
» Negative Binomial(r, p) with 8 = log(1 — p) = log(up/r) and ¢ = 1.

11/48
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Example - Gamma

The gamma(a, 8) distributions belong to the exponential dispersion families. Its
density is

ﬂaya—le—ﬁy
/" T(a)
— exp (—logI'(a) + alog B+ (a — 1) logy — By)

B —§y—(—log(§))+1ogl/% oo T 1 1 Y
— exp é é — 108 ]-/—a —+ ]-/—a — ogy

~ e (Y2200
— p( 7 + (?Nﬁ)) % XNC(WM[ “),B)
e | El= % =

f(y)
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Some Properties of the exponential family
e The moment generating function can be expressed as

0 +ty) — b (6)
Y

e The cumulant generating function immediately follows:

My (t) = E(e") = exp | 24

0+ t) — b(6)
J .

oy (£) = log My (t) = 2

which can be used to determine

= mean: K; — aﬁgt(t) T b'(0) =E(Y) = u - /(/ M O (9
= variance: ko = 82'5;;('5) - = b"(0) = Var(Y) $

9&7)@«%&0{)//-

13/48
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Notice p = ¥'(6) and so mean p depends on location parameter 8 or 6 depends on
p. So we sometimes write 6 = 0(u).

Examples

e Normal N(u,0?): 0 = pand hence 0(u) = p.
Gamma(a, 8): § = —f/a = — and hence 6(u) = — . #

I

Inverse Gaussian(a, 8): = —182/a? = —2—; and hence 0(u) = — 5.

Poisson(u) with 8 = log u and hence 0(u) = log p.

Binomial(m, p) with 6 = log[p/(1 — p)] = log[u/(m — p)] and hence 0(u) =
log[p/(m — p)].

Negative Binomial(r, p) with 8 = log(1 — p) = log(up/r) and hence 6(u) =
log(1 — p) = log(up/r).

X~ Ba(1,p)
EOX= pe p

-y
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Example
For the gamma(a, 8) random variable Y, find 6(u).

Answer: The density can be written as

y0 — b(0)
(0

) = ex o)

where§ = -2, = 1 p(9) = —log(—9),
S

log =
c(y;¥) = —5> + (5 — 1) logy — logT'(}). Then

u=E[Y]=b(0) = —%.

Therefore,

15/48
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Variance Function

e The variance is sometimes expressed as Var(Y) = 4V (u) where clearly

Vi(p) =0"(6(n))

<
and is called the variance function.

Examples \/ ; & Y db% M— W 0%
e Normal N (u,c?) with Vig =1 P_

o Gamma(a, 8) with V(u) = p?

o Inverse Gaussian(a, 8) with V(u) =

e Poisson(u) withV(pu) =y —— \/@“CM(L (’D - luzar ) /)
e Binomial(m, p) with V() = u(1 — u/m)

 Negative Binomial(r, p) with V(i) = u(1 + p/r)

o dhe the vertine @ Y doed o p.

16/48
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Mean-variance relationship

« With linear regression, central
assumption 1S constant variance

(top left-hand graph)

1.420

« Count data: response is integer,
lots of zeros—variance may
increase linearly with mean (top

right)

Variance
Variance

1.410
|

1.400

e Proportion data: count of number
of failures of events or successes,
variances will be inverted U-
shape (bottom left)

Variance
Variance

<
-
«©
(=}
@
<}
s
=}
N
[=}
<
<}

e If response follows gamma
distribution (e.g. time-to-death 0o 2 4 5 8 1
data), variance increases faster
than linearly with mean (bottom

right).

0 2 4 6 8 10

0 20 40 60 80 100
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Example
Show that the variance function of Gamma(a, 8) GLM is V (u) = u?.
-_—
Answer:
6 — b0
1) = e (L i)
- X
where § = —2 (1y = 1 \p(9) = —log(—0). (/(p) - /U
Note that u = E[Y] = ¥/(f) = —5, and therefore = D(L
o2
po L 7
H q} — ’L_
So V() = b'(6) = 4 = i X

[ Yo~ Gomma (0, B)
A1) = X

L
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The link between both components 8= (b")" &J

o The mean y; is connected to the linear predictor x;3 through

M = g_l(Xiﬂ) =g '(m;) or m;=g(m)

where g is called the link function.

o If g(-) = 6(+), that is, if Ny
0; = i, (h\> (}j3: >(/8

we say we have a canonical link, or natural link function. V . k’) ( X p >

19/48
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Canonical Link Functions b ()= -';,UQ‘

e Some canonical links are:

Distribution Canonical Link g (u) Called
Normal g(p) =0(pn) = p Identity
Poisson g(pn) =0(n) =logu Log link
Binomial (1) = 0(n) = log (nﬁ) Logit
Gamma g(p) =0(u) =—-1/u Reciprocal



iPad

iPad

iPad

iPad

iPad


-y

21/48

Summary of GLM components

A GLM models an n-vector of independent response variables, Y using

1. Random component: For each observation y; we use an exponential
dispersion model

y;0; — b (6;)
(0

where 6; is the canonical parameter, 1 is a dispersion parameter and function
b(-) and ¢(-, -) are known.

2. Sytematic component: 1, = x;8 = By + iz + - - - + Bpzip, the linear
predictors with 8 = (B, 81, . - ., Bp) regression parameters.

f(yi;0;) = exp + ¢ (yi; )

3. Parametric link function: the link function g(u;) = 1; = x;8 combines the
linear predictor with the mean p; = E[Y;]. The link is called canonical if §; = »;
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Lecture Outline

e Introduction to GLMs
e The components of a GLM
e Fita GLM
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— )
Procedure 0=(b") [[J >
g.——
Constructing a GLM consists of the following steps:

o Choose a response distribution f(y;) and hence choose b(8).
e Choose alink g(u). — (Whes tn W W M
« Choose explanatory variables z in terms of which g(u) is to be modeled.

o Collect observations yi, - - - , y, on the response y and corresponding values
xy,- -+ , T, on the explanatory variables x.

o Fit the model by estimating 8 and, if unknown, .

 Given the estimate of 3, generate predictions (or fitted values) of y for
different settings of X and examine how well the model fits. Also the
estimated value of 8 will be used to see whether or not given explanatory
variables are important in determining .

o Bormein) &y Dore 6. {%m

22 /48



iPad

iPad

iPad

iPad

iPad

iPad

iPad


-y

Case Study: Motor claims illustration

o Consider the data used in McCullagh and Nelder (1989), page 299, related to
motor claims. So the responses are claims.

o There are three factors used:
= policyholder age (PA), with 8 levels, 17-20, 21-24, 25-29, etc.
= car group (CG), with 4 levels, A, B, C, and D.
= vehicle age (VA), with 4 levels, 0-3, 4-7, 8-9, 10+

e There are a total of 123 different cells of data.

23 /48
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Case Study: Motor claims illustration

library(tidyverse) ]
PCarIns <- read_csv("PrivateCarIns1975-Data.csv")

PCarIns <- PCarIns filter(Numb.Claims>0) # remove the 3 categories with no claims

str(PCarIns)

spc_tbl_ [123 x 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)

$ Pol.Age tnum [1:1231 11 11111111...

$ Cpol.Age : chr [1:123] "17-20" "“17-20" "17-20" "17-20" ...
$ Car.Group : chr [1:123] "A™ "A™ "A"™ "A" ...

$ Veh.Age :num [1:123]1 1234123412 ...

$ Cveh.Age : chr [1:123] "@-3" "4-7" "8-9" "10+"

$ Avg.Claims : num [1:123] 289 282 133 160 372 249 288 11 189 288 ...
$ Numb.Claims: num [1:123] 8 8 41 10 28 119 13 ...
- attr(x, "spec")=
. cols(

Pol.Age = col_double(),

Cpol.Age = col_character(),

Car.Group = col_character(),

Veh.Age = col_double(),

Cveh.Age = col_character(),

Avg.Claims = col_double(),

Numb.Claims = col_double()

)

- attr(x, "problems")=<externalptr>

# convert to categorical )
PCarIns <- PCarlns
mutate(Cpol.Age = factor(Cpol.Age),
Car.Group = factor(Car.Group),
Cveh.Age = factor(Cveh.Age))
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Case Study: Motor claims illustration

Histogram of Avg. Claims Scatter Plot of Claims by Policy Group
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Case Study: Motor claims illustration

Histogram of Avg. Claims Scatter Plot of Claims by Car Group
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Case Study: Motor claims illustration

Histogram of Avg. Claims Scatter Plot of Claims by Policyholder Age
o
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PCarlns$Avg.Claims Policyholder Age

How could we model the relationship between claim Amounts and the
covariates?
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Maximum Likelihood Estimation

o The parameters in a GLM are estimated using maximum likelihood.

o For each observation y; the contribution to the likelihood is

y;0; — b (6;)
P

 Given vector y, an observation of Y, MLE of 3 is possible. Since the y; are
mutually independent, the likelihood of 3 is

f(yi;6;) = exp [ +c(yi; )| -

n

L(B) = ]| f(v:;6).

1=1

28 /48
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Maximum Likelihood Estimation

So for n independent observations yi, y2, - - - , Yn, We have

y;0; — b(ei)
(U

L(y;u) = i]jlexp [ + ¢ (i3 ¢)] :

Take log to obtain the log-likelihood as

i) =S [yzﬂi s c(yz-;w)] .

29 /48
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Example

Consider a GLM model with the canonical link and gamma distribution. The

density of response variable is

yd — b(6)
(2

) = ex Feluiv)

with b(6) = — log(—0).
Moreover, with canonical link, we have 0; = 6(u;) = g(u;) = x; 8.
The log-likelihood is

Uy;p) = Z (yiei ;b(ei) -+ C(yz-;w))

30/48
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Example (continued)
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Case Study: Motor claims illustration - Gamma
GLM

pcarins.glm <- glm(Avg.Claims

Call:
glm(formula = Avg.Claims ~ Cpol.Age + Car.Group + Cveh.Age, family = Gamma,
data = PCarIns, weights = Numb.Claims)

Coefficients:

(Intercept)

Cpol.
Cpol.
Cpol.
Cpol.
Cpol.
Cpol.
Cpol.

Age21-24
Age25-29
Age30-34
Age35-39
Age40-49
Age50-59
Age60+

Car.GroupB
Car.GroupC
Car.GroupD

Cveh.
Cveh.
Cveh.

Agelo+
Aged-7
Age8-9

P WRArRPROWOOORRA,WEW

.411e-03
.014e-04
.500e-04
.623e-04
.370e-03
.695e-04
. 164e-04
.201e-04
. 765e-05
. 139e-04
.421e-03
. 154e-03
.663e-04
.651e-03

NPFRPRrRRPPRPPRPARARRREARRARERS

Cpol.Age
family=Gamma, data

summary(pcarins.glm)

NWONWONNNWPEROOS

Estimate Std. Error t value
.179e-04
.363e-04
. 124e-04
.106e-04
.192e-04
.046e-04
.080e-04
.157e-04
.687e-04
. 700e-04
. 806e-04
.423e-04
.009e-04
. 268e-04

.161
.232
. 849
.126
.268
.396
. 246
.213
.223
.611
.867
.390
.632
.281

Car.Group

= PCarIns)

Pr(>|t])
.31e-13
.816664
.397942
.262652
.001447
.018284
.026691
.028958
.823776
.000463
.84e-12
.05e-15
.000430
.45e-11

UUSOORP NSO O

*kk

*k

)k
*kk
)k
)k
*kok

Cveh.Age, weights=Numb.Claims, 0

b ton s L
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The “Null Model” and “Full Model”

o With a GLM we estimate Y; by ;
e For n data points we can estimate up to n parameters

o Null model: the systematic component is a constant term only.

A —

p; =y, forall 1=1,2,...,n

= Only one parameter — too simple

o Full or saturated model: Each observation has its own parameter.
i; =vy;, forall 1=1,2,...,n

= All variations can be explained by the covariates — no explanation of data
possible

33/48
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Deviance and Scaled Deviance
The log-likelihood in the full model gives

" | vif; — b(0;
tyiy) =Y |2 5 ( )+C(yz'§¢)
1=1

where 6; are the canonical parameter values corresponding to y; = y; for all i =

1,2,...,n.

34 /48
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Deviance and Scaled Deviance

o Let iz denote the M.L.E. of chosen model.

« One way of assessing the fit of a given model is to compare it to the model
with the “closest” possible fit: the full model

o The likelihood ratio criterion compares a model with its associated full
model.

L(y;m)| . -
—2log [L(y;y)] =2[(y;y) — Ly; )]
_ D(y,n)
P

e D(y, i) is called the deviance and D(y, i) /% the scaled :{/eviance.

 Deviance plays much the same role for GLMs that RSS plays for ordinary
linear models. (For ordinary linear models, deviance is RSS.)
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Example

The scaled deviance of a gamma(a, B) is

B y; i)
2log [L(y; y) Y Y

L(y; ]=2i yi(6: — 0,) b(éab(el-)]

—2}" yil/Bi —1/y;)  logy; —log i
i—1 L ¥ (o
2 < [y — Hi N
- [ — - log(yz'/,uz’)] .
P = ;

|

36 /48
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Exponential Dispersions and their Deviances
We drop the subscripti =1,2,...,n

Deviances are:

Distribution Deviance D(y, [i)

Normal Sy — fu)?

Poisson 2> lylog(y/i) — (y — i)]

Binomial 2> [ylog(y/f) + (m — y)log((m —y)/(m —
)]

Gamma 2> [—log(y/i) + (y — )/ A

Inverse Gaussian

> (y — )?/ (%)

37 /48
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Scaled Deviance as a Measure of Model Fit

o The scaled deviance is actually a measure of the fit of the model. It has
approximately (asymptotically true) a chi-squared distribution with degrees
of freedom equal to the number of observations minus the number of
estimated parameters.

l:(y7[1) 2
— wh —
w Xn—(p—|—1) en n o0

« Thus, we can use the scaled deviance usually for comparing models that are
nested (one model is a subset of the other) by looking at the difference in the
deviance and comparing it with the chi-squared table.

« Reminder: a significant value (at the 5% level) for a x? distribution with v
degrees of freedom is approximately 2v.

(D

38/48
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Model selection

» Nested models: Wald test, score test, likelihood ratio test (drop-in deviance
test)

 Non-Nested models: Use AIC = —2{(y; i) + 2d (the smaller the better)

~ Croe, ydidsion

39/48
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Model selection (Nested models)

-Modell:n:50+ﬂlx1+,,,ﬁqg;q, WM
/\/\/L/\
e Model2:n = By + B1x1 + ... ﬁqwq -+ ﬂq+1:13q+1 + ... 52,332,

Is Model 2 an improvement over Model 17

Hy:B411=--=0,=0

H, : at least one 3; is non-zero

-y
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Model selection (Nested models) ,
o Consider two models, ™ (X /),_&H >

= Model 1: ¢ parameters, with scaled deviance __1_7_1 ;
= Model 2: p parameters (p > ¢q), with scaled deviance Ds.”™ (),-( 41 .)

e Model 2 is a significant improvement over Model 1 (a more parsimonious

model), if D; — D, > the critical value obtained from a x*(p — q) distribution.

. "\q
e Since

P [x*(v) > 2v| ~ 5%,
the following rule of thumb can be used as an approximation:

model 2 is preferred if D; — Dy > 2(p — q).

41/ 48
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Case Study: Motor claims illustration - Null
Model

#Null model

pcarins.glm.NULL <- glm(Avg.Claims~ 1, weights=Numb.Claims, family=Gamma,
data = PCarlIns)

pcarins.glm.NULL

Call: glm(formula = Avg.Claims ~ 1, family = Gamma, data = PCarlns,
weights = Numb.Claims)

Coefficients:
(Intercept)
0.004141

Degrees of Freedom: 122 Total (i.e. Null); 122 Residual
Null Deviance: 649.9
Residual Deviance: 649.9 AIC: 99520

42 /48
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Case Study: Motor claims illustration - Deviance
analysis

#analysis of the deviance table )
print(anova(pcarins.glm, test="Chi"))

Analysis of Deviance Table [‘ - :)
Model: Gamma, link: inverse If) ;E{-’%’? '

Response: Avg.Claims

Terms added sequentially (first to last) cho {'Fg -7 Zx 7 ?

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

ar.eroup 3 228.309 112 39.38 < 2.2e-16 kx*k
Cveh.Age 3 214.602 109 124.78 < 2.2e-16 *kx

- 6[1_' w)
Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1 fg:zg/

NULL 122 649.87 \ &mﬂ#\‘ -
Cpol.Age 7 82.178 115 567.69°3.801e-12 *%x %) $o
“Tar Group

Ocds P ANovh mtlss.
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Continued

The scaled deviance statistics are provided below:

Model Deviance First Diff. d.f. Mean Deviance
1 649.9

PA 567.7 82.2 7 117597/
PA+CG 339.4 228.3 3 76.1 > 2
PA+CG+VA 124.8 214.7 3 716 > 2V
+PA-CG 90.7 34.0 21 162 L 2 X
+PA-VA 71.0 19.7 21 094

+CG-VA 65.6 5.4 9 0.60 v
Complete 0.0 65.6 58 1.13

44 / 48
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Residuals in GLMs

o Residuals are a primary tool for assessing how well a model fits the data.

o They can also help to detect the form of the variance function and to diagnose
problem observations.

o We consider three different kinds of residuals:

AR deviance residuals: 7P = sign(y; — 7i;)v/d; where d; is contribution of ith
observation to the scaled deviance (drawing on idea that deviance is akin
to RSS).

Yi — B

V V(1)

= response residuals: they are simply y; — ;.

= Pearson residuals: 7 =
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Residuals in GLMs (continued)

o If the model is correct and the sample size n is large, then the (scaled)

. . o 2
deviance is approximately x; . 1)-

» The expected value of the deviance is thus n — (p + 1), and one expects each
case to contribute approximately (n — (p + 1))/n ~ 1 to the deviance. If |d;| is
much greater than 1, then case i is contributing too much to the deviance
(contributing to lack of fit), indicating a departure from the model
assumptions for that case.

o Typically deviance residuals are examined by plotting them against fitted
values or explanatory variables.




-y

Case Study: Motor claims illustration - Residual

{ plot(pcarins.glm, which = 1:2) O |
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Case Study: Motor claims illustration - Residual

plot(pcarins.glm, which = c(3,5))
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Residuals vs Leverage
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