
Lab 5: Generalised Linear Models
ACTL3142 and ACTL5110

Questions

Conceptual Questions

Components of a GLM

1. For the following members of the exponential dispersion family, give the density (including
the domain), the mean and the variance:

a. Normal(µ, σ2)

b. Poisson(µ)

c. Binomial(m, p)

d. Negbin(r, p)

e. Gamma(α, β)

f. Inverse Gaussian(α, β)

Solution

2. ⋆ The density of the Binomial distribution is given by

f(y; p) = n!
(n− y)!y!p

y(1 − p)n−y

Show that the Binomial distribution is a member of the exponential dispersion family
with density

f(y; θ, ψ) = exp
[
yθ − b(θ)

ψ
+ c(y;ψ)

]
.

a. Give expressions for b(θ), c(y;ψ) and ψ.

b. List the three constituent parts of a generalized linear model.
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c. Find the expression for the deviance of a binomial model.

Solution

Deviance and Scaled Deviance

3. ⋆ Verify that
D

ψ
= −2 log L(y;µ)

L(y; y) = 2
ψ

∑
i

(
yi log yi

µ̂i
− (yi − µ̂i)

)
is the scaled deviance for a Poisson distribution.

Solution

4. Verify that
D

ψ
= −2 log L(y;µ)

L(y; y) = 2
ψ

∑
i

(
− log yi

µ̂i
+ (yi − µ̂i)

µ̂i

)
is the scaled deviance for a gamma distribution.

Solution

5. Show that the deviance for an Inverse Gaussian distribution has the following form:

D =
n∑

i=1

1
µ̂i

2
(yi − µ̂i)2

µ̂i
.

Solution

Fit a GLM and Evaluate the quality of a model

6. ⋆ (Question #9, ACTL3003/5106 Final Exam 2005)

A random variable Y is said to have an exponential dispersion model if its density can be
expressed in the form

fY (y; θ, ψ) = exp
(
yθ − b(θ)

ψ
+ c(y;ψ)

)
where θ and ψ are parameters and b(·) and c(·; ·) are both functions

Automobile insurance claims experience data of a French insurance company for a two-
year period, beginning January 2001 and ending December 2002, is being modeled using
a Generalized Linear Model (GLM) framework.
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Assume that the number of claims for risk class i, Yi, has a Poisson distribution with
probability density function of the form

fY (y;µ) = e−µµy

y! , for y = 0, 1, 2, . . .

where its mean µ > 0 is related to the variables SEX, VEH_AGE, AGE, and LOYALTY as

log (µi) = log (EXPi)+β0+β1SEXi+β2VEH_AGEi(1)+β3VEH_AGEi(2)+β4AGEi+β5LOYALTYi

where detailed description of variables and their definitions are found below:

Variable Description

SEX 1 = male; 2 = female.
VEH_AGE 1 = less than 1 year; 2 = between 1-2 years; 3 = 2 years and more.
AGE 1 = 20 years and below; 2 = above 20 years.
LOYALTY 1 = has been client for past 36 months; 0 = otherwise.
Y total number of claims
EXP total number of policies exposed to claims

Note that the variables VEH_AGE(1) and VEH_AGE(2) in the regression equation are the
respective indicator variables for VEH_AGE of types 1 and 2.

SAS output for running PROC GENMOD on the data is provided below.
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a. Show that the Poisson distribution can be written in exponential dispersion form.
Identify the dispersion and canonical parameters, ψ and θ respectively, in terms of
µ, to the extent possible.

b. Derive the expression for the deviance of the Poisson GLM model.

c. Based on the deviances provided in the SAS output, analyze the adequacy of the
model

d. Explain the meaning of overdispersion in the context of a Poisson GLM model.

Solution

7. An insurance company has a set of n risks (i = 1, 2, . . . , n) for which it has recorded the
number of claims per month, Yij , for m months (j = 1, 2, . . . ,m). It is assumed that the
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number of claims for each risk, for each month, are independent Poisson random variables
with

E(Yij) = µij .

These random variables are modelled using a Generalized Linear Model, with

logµij = βi, for i = 1, 2, . . . , n.

a. Derive the maximum likelihood estimator of βi

b. Show that the deviance for this model is

2
n∑

i=1

m∑
j=1

(
yij log yij

ȳi
− (yij − ȳi)

)
where ȳi = 1

m

∑n
j=1 yij .

c. A company has data for each month over a 2 year period. For one risk, the average
risk of claims per month was 17.45. In the most recent month for this risk, there were
9 claims. Calculate the contribution that this observations makes to the deviance.

Solution

8. There are m male drivers in each of three age groups, and data on the number of
claims made during the last year are available. Assume that the numbers of claims are
independent Poisson random variables. If Yij is the number of claims for the jth male
driver in group i (i = 1, 2, 3; j = 1, 2, . . . ,m), let E(Yij) = µij and suppose log (µij) = αi.

a. Show that this is a Generalized Linear Model, identifying the link function and the
linear predictor.

b. Determine the log-likelihood, and the maximum likelihood estimators of αi for
i = 1, 2, 3.

c. For a particular data set with 20 observations in each group, several models are
fitted, with deviances as shown below:

Link function Deviance

Model 1 log (µij) = αi 60.40

Model 2 log (µij) =
{
α, if i = 1, 2
β, if i = 3

61.64

Model 3 log (µij) = α 72.53
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i. Determine whether or not model 2 is a significant improvement over model 3,
and whether or not model 1 is a significant improvement over model 2

ii. Interpret these three models

Solution

9. An insurance company tested for claim sizes under two factors, i.e. **CAR**, the
insurance group into which the car was placed, and **AGE**, the age of the policyholder
(i.e. two-way contingency table). It was assumed that the claim size yi follows a gamma
distribution i.e.

f(yi) = 1
Γ(νi) yi

(
yi νi

µi

)νi

exp
(

−yi νi

µi

)
for yi ≥ 0, µi > 0, νi = 1

with a log-link function. Analysis of a set of data for which n = 8 provided the following
SAS output:

Observation Claim size CAR type Age group Pred Xbeta Resdev

1 27 1 1 25.53 3.24 0.30
2 16 1 2 24.78 3.21 -1.90
3 36 1 1 3.41 1.03
4 45 1 2 38.09 3.64 1.11
5 38 2 1 40.85 3.71 -0.46
6 27 2 2 36.97 3.61 -1.73
7 14 2 1 2.45 0.69
8 6 2 2 14.59 2.68 -2.55

Calculate the fitted claim sizes missing in the table.

Solution

Applied questions

1. ⋆ In this question, the vehicle insurance data set is used, dataCar. This data set is based
on one-year vehicle insurance policies taken out in 2004 or 2005. There are 67856 policies
of which 4624 had at least one claim.

The data frame dataCar contains claim occurrence clm, which takes value 1 if there is a
claim and 0 otherwise. The variable veh_value represents the vehicle value which takes
value from $0 − $350, 000. We will not be concerned about other variables at the moment.
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In this question, we will build a logistic regression model to apply to the vehicle insurance
data set. Previous study has shown that the relationship between the likelihood of
occurrence of a claim and vehicle value are possibly quadratic or cubic.

a. Suppose the relationship between vehicle value and the probability of a claim is
cubic, formulate the model and test significance of the coefficients.

b. Which variable(s) is/are significant at the 1% level?

c. Use AIC to determine which model is the best model: Linear, quadratic or cubic.

Solution

2. ⋆ Third party insurance is a compulsory insurance for vehicle owners in Australia. It
insures vehicle owners against injury caused to other drivers, passengers or pedestrians,
as a result of an accident.

In this question, the third party claims data set Third_party_claims.csv is used. This
data set records the number of third party claims in a twelve-month period between
1984-1986 in each of 176 geographical areas (local government areas) in New South Wales,
Australia.

a. Now consider a model for the number of claims (claims) in an area as a function
of the number of accidents (accidents). Produce a scatter plot of claims against
accidents. Do you think a simple linear regression model is appropriate?

b. Fit a simple linear regression to the model and use the plot command to produce
residual and diagnostic plots for the fitted model. What do the plots tell you?

c. Now fit a Poisson regression model with claims as response and log(accident) as
the predictor (include offset=log(population) in your code). Check if there is
overdispersion in the model by computing the estimate of ψ.

d. Now fit the regression model by specifying family=quasipoisson. Comment on
the estimates of the parameters and their standard errors.

Solution
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Solutions

Conceptual Questions

Components of a GLM

1. See the lecture notes. The density and the mean are given in the table and the variance
can be derived easily from the table with:

σ2 = ψ · V (µ).

Try to map some of the densities into the exponential family formulation.

2. You ought to be able to verify that the Binomial belongs to the family of Exponential
Dispersion with

b(θ) = n log (1 + eθ), c(y;ψ) = log
(

n!
(n− y)!y!

)
, and ψ = 1.

You should also be able to show that

θ = log p

1 − p
= log µ

n− µ
.

The three components of a generalized linear model are:

a. Stochastic Component: The observations Yi are independent and each follows an
Exponential Dispersion distribution.

b. Systematic Component: Every observation has a linear predictor ηi =
∑

j xijβj

where xij denotes the jth explanatory variable, and
c. Link Function: The expected value E[Yi] = µi is linked to the linear predictor ηi by

the link function ηi = g(µi).

Now to find the deviance of the binomial (deviance is also the scaled deviance since
ψ = 1), we have

D

ψ
= −2 log


∏
i

n!
(n−yi)!yi!

(
µ̂i
n

)yi

(1 − µ̂i
n )(n−yi)∏

i

n!
(n−yi)!yi!

(yi
n

)yi (1 − yi
n )(n−yi)


= −2 log

(∏
i

(
µ̂i

yi

)yi
(
n− µ̂i

n− yi

)n−yi
)

= −2
∑

i

[
yi log

(
µ̂i

yi

)
+ (n− yi) log

(
n− µ̂i

n− yi

)]

= 2
n∑

i=1

[
yi log

(
yi

µ̂i

)
+ (n− yi) log

(
n− yi

n− µ̂i

)]
.
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Deviance and Scaled Deviance

3. We know that if D denotes the deviance, the scaled deviance is

D

ψ
= −2 log

(
L̂/L̃

)
by definition, where L̂ is the likelihood computed using the MLE’s µ̂ under the current
model replacing the µ, while L̃ is the likelihood computed with the µ replaced by the
estimates under the “full model”, hence the actual observations y, in view of the remarks
just below (8.22). To show that (8.23) results from this is basic algebra. To see this, note
that

D

ψ
= −2 log

(∏n
i=1 e−µ̂i µ̂yi

i /yi!∏n
i=1 e−yiyyi

i /yi!

)

= −2 log
(

n∏
i=1

e−(µ̂i−yi)
(
µ̂i

yi

)yi
)

= −2
n∑

i=1

[
−(µ̂i − yi) + yi log

(
µ̂i

yi

)]

= 2
n∑

i=1

[
(µ̂i − yi) − yi log

(
µ̂i

yi

)]

4. To show that (8.26) results, following the discussion in the previous problem, we can
verify that, for exponential dispersion models, the scaled deviance can be expressed as

D

ψ
= −2 log

(
L̂/L̃

)

= 2
n∑

i=1

yi

(
θ̃i − θ̂i

)
ψ

−
b
(
θ̃i

)
− b

(
θ̂i

)
ψ

 .
For Gamma, we have θ(µ) = −1/µ and b(θ) = − log(−θ) = logµ, we than have

D

ψ
= 2

n∑
i=1

[
yi (1/µ̂i − 1/yi)

ψ
− log yi − log µ̂i

ψ

]

= 2
ψ

n∑
i=1

[
yi − µ̂i

µ̂i
− log (yi/µ̂i)

]
.

Now, if the scale parameter were different for each observation according to some weight
wi, then it is easy to verify.
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5. Recall that the scaled deviance for any member of the Exponential Dispersion family has
the form

D

ψ
= 2

[
ℓ
(
θ̃; y

)
− ℓ

(
θ̂; y

)]
= 2
ψ

n∑
i=1

[(
yiθ̃i − b

(
θ̃i

))
−
(
yiθ̂i − b

(
θ̂i

))]
where for the Inverse Gaussian, we have verified (in lecture) that

ψ = β/α2, θ = −1
2

(
β

α

)2
= − 1

2µ2 , and b (θ) = −
√

−2θ = −1/µ

Thus, the deviance can be expressed as

D = 2
n∑

i=1

[(
yi

(
− 1

2y2
i

)
+ 1
yi

)
−
(
yi

(
− 1

2µ̂2
i

)
− 1
µ̂i

)]

= 2
n∑

i=1

[
1

2yi

(
1 + y2

i

µ̂2
i

− 2yi

µ̂i

)]
=

n∑
i=1

[
1
yi

(
1 − yi

µ̂i

)2
]

=
n∑

i=1

[
1
yi

(
µ̂i − yi

µ̂i

)2]
=

n∑
i=1

1
µ̂2

i

1
yi

(µ̂i − yi)2 .

This gives the desired result.

Fit a GLM and Evaluate the quality of a model

6. a. For a Poisson(µ) distribution, its density can be expressed as

fY (y) = e−µµy

y!

= 1
y! exp (−µ+ y lnµ)

= exp (y lnµ− µ− ln y!)

Thus, we see it belongs to the exponential dispersion family with

θ = lnµ, ψ = 1, b(θ) = µ, c(y;ψ) = − ln y!

b. Recall that the scaled deviance for any member of the Exponential Dispersion family
has the form

D

ψ
= 2

[
ℓ
(
θ̃; y

)
− ℓ

(
θ̂; y

)]
= 2
ψ

n∑
i=1

[(
yiθ̃i − b

(
θ̃i

))
−
(
yiθ̂i − b

(
θ̂i

))]
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where for the Poisson, we have, from part 1 above that

θ = lnµ, ψ = 1, b(θ) = µ, c(y;ψ) = − ln y!

Note that θ̃̃θ̃θ = yyy under the full model. Thus the deviance can be expressed as

D = 2
n∑

i=1
[(yi(ln yi) − yi) − (yi(ln µ̂i)) − µ̂i]

= 2
n∑

i=1
[yi(ln yi − ln µ̂i) − (yi − µ̂i)]

This gives us the desired form of the deviance of the Poisson.
c. First, summarizing the deviance statistics below:

Model Deviance Differences df ROT: Accept if D1-D2>2(p-q) Significant?

intercept 199.9268 - - -
sex 194.5739 5.3529 1 Accept Yes
veh_age 194.5571 0.0168 2 Reject No
driver_age 188.9746 5.5825 1 Accept Yes
loyalty 188.3470 0.6276 1 Reject No

[ROT means Rule-of-Thumb, so there is no need to look up chi-square table.] Thus,
the GLM model appears to be suitable/adequate with SEX and DRIVER_AGE as
considered significant predictor variables for claims.

d. Overdispersion is a phenomenon that sometimes occurs in data that are modeled
using the Poisson distribution. This is because the mean and the variance for a
Poisson are both equal to the Poisson parameter, and if the observed variance from
the data is much larger than the observed mean, then there is potential problem of
over-dispersion. If the estimate of the dispersion after fitting the data, as measured
by the either the deviance or Pearson’s chi-square, divided by the degrees of freedom,
is not near 1, then the data may be overdispersed if the dispersion estimate is greater
than 1, or underdispersed if the dispersion estimate is less than 1. A convenient
and simple way to model this situation is to allow the variance function of the
Poisson distribution to have a multiplicative overdispersion factor. That is, we let
the variance function be so that there is scale parameter ϕ, as in example in class,
we have V (µ) = ϕµ.

7. a. The likelihood is
∏

i,j

µ
yij

ij e−µij

yij ! and the log-likelihood is therefore
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ℓ (β) =
n∑

i=1

m∑
j=1

(yij logµij − µij − log yij !)

=
n∑

i=1

m∑
j=1

(
yijβi − eβi − log yij !

)

=
n∑

i=1
βi

m∑
j=1

yij −
n∑

i=1
eβim−

n∑
i=1

m∑
j=1

log(yij)!.

Applying first order condition:

∂ℓ (β)
βi

=
m∑

j=1
yij −meβi = 0

so that

eβi = 1
m

m∑
j=1

yij ≜ yi

and the MLE is

β̂i = log yi.

b. The deviance is

2 [ℓ (y; y) − ℓ (y;µ)] = 2
[ ∑n

i=1
∑m

j=1 (yij log yij − yij − log yij !)
−
∑n

i=1
∑m

j=1 (yij log yi − yi − log yij !)

]

= 2
n∑

i=1

m∑
j=1

(
yij log yij

yi

− (yij − yi)
)
.

c. The contribution to the deviance in this case is

Dij = 2
(
yij log yij

yi

− (yij − yi)
)

= 2 ·
(

9 log 9
17.45 − (9 − 17.45)

)
= 4.98.

8. a. If Y has a Poisson distribution with mean parameter µ, then its density can be
written as

f (y;µ) = e−µµy/y! = exp
(
y logµ− µ

1 − log y!
)

which is of the exponential dispersion family form. The link function is the log so
that g(µ) = logµ and the linear predictor is

η = logµ = αi.

So this is a Generalized Linear Model.
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b. The likelihood is given by ∏3
i=1

∏m

j=1

µ
yij

ij e−µij

yij !
so that the log-likelihood is

3∑
i=1

m∑
j=1

(yij logµij − µij − log yij !) .

In terms of αi, we re-write this as

ℓ (α1, α2, α3) = −
3∑

i=1
meαi +

3∑
i=1

yi+αi + constant

where yi+ refers to the sum of the observations in the ith group. Differentiating, we
get

∂ℓ (αi)
∂αi

= −meαi + yi+ = 0

so that the maximum likelihood estimator of αi is

α̂i = log (yi+/m) .

c. In comparing the models, notice the nesting: Model 3 is the smallest and is contained
in Model 2 which is contained in Model 1. We may use our Rule of Thumb of
significant improvement if the decrease in deviance is larger than twice the additional
parameter. Here we summarize in table form:

Model Deviance Difference d.f. D1 −D2 > 2 (p− q)?
Significant
improvement?

Model
3

72.53 - -

Model
2

61.64 10.89 1 Yes Yes

Model
1

60.40 1.24 1 No No

So Model 2 is a significant improvement from Model 3, but Model 1 is not a significant
improvement from Model 1. Now, regarding interpretation of the models: Model 3
says that there is no difference in the average number of claims for the three age
groups. Model 2 says that there is no difference in the average number of claims
between age groups 1 and 2, but that the third age group may be different. Model 1
gives the possibility of different average number of claims for each age group.
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9. We know that the linear predictor, for the ith observation, is

ηi = logµi =
∑

j

xijβj = xT
i β (in vector form).

Thus,
E (yi) = µi = exT

i ·β.

and therefore, the predicted values are

E (y3) = e3.41 = 30.27

and
E (y7) = e2.45 = 11.59.

Applied questions

1. a. Firstly, call install.packages("insuranceData") if you have not already done
so. Then:

library(insuranceData)
data("dataCar")

# To get some impression on the structure of the data,
# i.e., what variables are there
names(dataCar)

[1] "veh_value" "exposure" "clm" "numclaims" "claimcst0" "veh_body"
[7] "veh_age" "gender" "area" "agecat" "X_OBSTAT_"

Note that the response (Y variable) takes only 0 and 1 values. This means (1) a
binomial distribution with n = 1 and p is a reasonable model (2) the mean of the
response (E[Y |X]) is precisely p. Therefore, a logistic regression implies that we
should choose the link function g such that

log
( p

1 − p

)
= g−1(p) = η = α+ β1X + β2X

2 + β3X
3,

where X is the vehicle value and we are considering the cubic formula.

We can now fit a glm using the following command.

car.glm1 <- glm(clm ~ veh_value + I(veh_valueˆ2) + I(veh_valueˆ3),
family = binomial(link = "logit"), data = dataCar

)

b. summary(car.glm1)
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Call:
glm(formula = clm ~ veh_value + I(veh_value^2) + I(veh_value^3),

family = binomial(link = "logit"), data = dataCar)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9247606 0.0476282 -61.408 < 2e-16 ***
veh_value 0.2605947 0.0420331 6.200 5.66e-10 ***
I(veh_value^2) -0.0382409 0.0084167 -4.543 5.53e-06 ***
I(veh_value^3) 0.0008803 0.0002752 3.199 0.00138 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 33767 on 67855 degrees of freedom
Residual deviance: 33711 on 67852 degrees of freedom
AIC: 33719

Number of Fisher Scoring iterations: 6

The fit shows that all the coefficients are significant as the p-values are smaller than
0.01.

c. # Linear
car.glmLinear <- glm(clm ~ veh_value,

family = binomial(link = "logit"),
data = dataCar

)
# Quadratic
car.glmQuadratic <- glm(clm ~ veh_value + I(veh_valueˆ2),

family = binomial(link = "logit"), data = dataCar
)
# Cubic
car.glmCubic <- glm(clm ~ veh_value + I(veh_valueˆ2) + I(veh_valueˆ3),

family = binomial(link = "logit"), data = dataCar
)
## AIC
print(car.glmLinear$aic)

[1] 33749.12

print(car.glmQuadratic$aic)
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[1] 33718.92

print(car.glmCubic$aic)

[1] 33718.72

The difference between the AIC of the cubic and quadratic models is less than one.
This shows that if we include a cubic explanatory variable, the improvement of the
fit quantified by AIC only decreases by 0.2. Therefore, when evaluating a model
by the principal of parsimony, a quadratic model is preferred. Further, the AIC of
the quadratic model is much less than that of the linear, suggesting that the linear
model is inadequate.

2. a. claimsdata <- read.csv("Third_party_claims.csv")
attach(claimsdata)
plot(accidents, claims, xlab = "Accidents", ylab = "Claims")
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We can clearly see that there is a concentration of points around the origin make it
difficult to discern the relationship between the predictor and response. The data
is also strongly heteroskedastic, which means more variable for higher value of the
predictor. This is a violation of the homoskedasticity assumption of linear model.

b. third.lm <- lm(claims ~ accidents, offset = log(population))
plot(third.lm)
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The residuals vs fitted plot shows that the residual is clearly do not follow a standard
normal distribution and the variance seems to inflate as the fitted value increases.
Diagnostic checks indicate clear violation of the homoskedasticity assumption.

c. third.poi <- glm(claims ~ log(accidents),
family = poisson,
offset = log(population)

)
summary(third.poi)
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Call:
glm(formula = claims ~ log(accidents), family = poisson, offset = log(population))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.093809 0.026992 -262.81 <2e-16 ***
log(accidents) 0.259103 0.003376 76.75 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 22393 on 175 degrees of freedom
Residual deviance: 15837 on 174 degrees of freedom
AIC: 17066

Number of Fisher Scoring iterations: 4

sum(resid(third.poi, type = "pearson")ˆ2) / third.poi$df.residual

[1] 101.7168

The estimate of ψ takes a value of 101.7168. The inflated dispersion parameter
suggests there is overdispersion in the data.

d. third.qpoi <- glm(claims ~ log(accidents),
family = quasipoisson,
offset = log(population)

)
summary(third.qpoi)

Call:
glm(formula = claims ~ log(accidents), family = quasipoisson,

offset = log(population))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.09381 0.27223 -26.058 < 2e-16 ***
log(accidents) 0.25910 0.03405 7.609 1.66e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 101.7172)
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Null deviance: 22393 on 175 degrees of freedom
Residual deviance: 15837 on 174 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

Model Dispersion parameter β̂0(se) β̂1(se)

Poisson ψ=1 -7.09381(0.02699) 0.25910(0.003376)
Quasi-Poisson ψ̂=101.7172 -7.09381(0.27223) 0.25910(0.03405)

The quasi-poisson estimates of β are identical to those of the Poisson model, but
with standard errors larger by a factor of ψ̂1/2 = 10.085.
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