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Generalised linear models
The linear, logistic and Poisson regression model have common properties
and can be summarised in a unified framework
Framework consists of a systematic and distribution part:

Systematic component: describes the mean structure
Stochastic component: describes the individual variation of the response
around the mean

This class of models is called Generalised Linear Models (GLM)
The class of GLMs has played a key role in the development of statistical
modelling and of associated software
The class of GLMs has numerous application in Actuarial Science
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Generalised linear models
Linear
Regression

Logistic Regression Poisson
Regression

Generalised
Linear Models

Type of Data Continuous Binary (Categorical) Count Flexible

Use Prediction of
continuous
variables

Classification Prediction of
the number
of events

Flexible

Distribution of Y Normal Bernoulli (Binomial
for multiple trials)

Poisson Exponential
Family

Link Function
Name

Identity Logit Log Depends on the
choice of
distribution

Link Function
Expression

Depends on the
choice of
distribution

E[Y ∣X] Xβ  1+eXβ
eXβ eXβ g (Xβ)−1

η(μ) = μ η(μ) = log  ( 1−μ
μ ) η(μ) =

log(μ)
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Insurance Applications
Application are numerous

Mortality Modelling
Rate making (Modelling Claims Frequency and severity)
Loss reserving

Models used are often multiplicative, hence linear on the log-scale.
Claim numbers are generally Poisson, or Poisson with over-dispersion. These
distributions are not symmetric and their variance is proportional to mean.
Claim amounts are skewed to the right densities, shaped like for example
Gamma.
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When to use a GLM?
Use GLMs when

variance not constant and/or
when errors not normal.

Cases when we might use GLMs include: when response variable is

count data expressed as proportions (e.g. logistic regression)
count data that are not proportions (e.g. log-linear models of counts)
binary response variable (e.g. dead or alive)
data on time to death where the variance increases faster than linearly with
the mean (e.g. time data with gamma errors).

Many basic statistical methods (regression, -test) assume constant variance—
but often untenable. Hence value of GLMs.

t
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Error structure
Many kinds of data have non-normal errors

errors that are strongly skewed
errors that are kurtotic
errors that are strictly bounded (as in proportions)
errors that cannot lead to negative fitted values (as in counts)
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Error structure
GLM allows specification of a variety of different error distributions:

Poisson errors, useful with count data
binomial errors, useful with data on proportions
gamma errors, useful with data showing a constant coefficient of variation
exponential errors, useful with data on time to death (survival analysis)
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The components of a GLM
A Generalised Linear Model (GLM) has three components:
1. A systematic component allowing for inclusion of covariates or explanatory

variables (captures location).
2. A stochastic component specifying the error distributions (captures spread)
3. A parametric link function linking the stochastic and systematic

components by associating a function of the mean to the covariates.
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The Systematic Component
The systematic component is a linear predictor , that is, a function (with
linear coefficients) of the covariates, sometimes called explanatory variables.
Consider the following linear (in its coefficients) model:

where  is the ’th row of  and there are  predictor variables (or covariates)
affecting the response.
The mean  (location) of the response will depend on  in that

where  is called the link function (unsurprisingly!).

η

η  =i x  β =i β  +0 β  x  +1 i1 ⋯ + β  x  ,p ip

xi i X p

μ  i η  i

  

η  i

μ  i

= g(μ  )i
= g (x  β) = g (η  ),−1

i
−1

i

g
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The Stochastic Component
We are now interested in building spread around our linear model for the
mean
We will use a the exponential dispersion family.
We say  comes from an exponential dispersion family if its density has the
form

Here  and  are location and scale parameters, respectively. Note in the book
they use different representation but they are equivalent.
 known as canonical or natural parameter of the distribution.

 and  are known functions and specify the distribution

Y

f  (y) =Y exp  + c y;ψ .[
ψ

yθ − b θ( )
( )]

θ ψ

θ

b θ( ) c y;ψ( )
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Examples of Exponential Dispersion Families
Normal  with  and 
Gamma  with  and 

Inverse Gaussian  with  and 

Poisson  with  and 
Binomial  with  and 
Negative Binomial  with  and 

N μ,σ( 2) θ = μ ψ = σ .2

(α,β) θ = −β/α = −  

μ
1 ψ = 1/α.

(α,β) θ = −  β /α =2
1 2 2 −  2μ2

1 ψ = β/α .2

(μ) θ = logμ ψ = 1.

(m, p) θ = log p/ 1 − p =[ ( )] log μ/(m − μ)[ ] ψ = 1.

(r, p) θ = log(1 − p) = log(μp/r) ψ = 1.
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Example - Gamma
The gamma  distributions belong to the exponential dispersion families. Its
density is

where , , ,

(α,β)

  

f(y) =  

Γ(α)
β y eα α−1 −βy

= exp − log Γ(α) + α log β + (α − 1) log y − βy( )

= exp   +  − log Γ  +  − 1 log y  ⎝
⎛

 α
1

−  y − − log(  )
α
β (

α
β )

 α
1

log  1/α
1

(
1/α

1 ) (
1/α

1 ) ⎠
⎞

= exp  + c(y;ψ)(
ψ

yθ − b(θ) )

θ = −  

α
β ψ =  

α
1 b(θ) = − log(−θ)

c(y;ψ) =  +ψ

log  

ψ
1

(  −ψ
1 1) log y − log Γ(  )ψ

1
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Some Properties of the exponential family
The moment generating function can be expressed as

The cumulant generating function immediately follows:

which can be used to determine

mean: 

variance: 

M  (t) =Y E(e ) =Y t exp  .[
ψ

b θ + tψ − b θ( ) ( )]

κ  (t) =Y logM  (t) =Y  .
ψ

b(θ + tψ) − b(θ)

κ  =1    =∂t
∂κ  (t)Y

∣
∣
t=0

b (θ) = E(Y ) =′ μ

κ  =2    =∂t2
∂ κ  (t)2

Y

∣
∣
t=0

ψb (θ) = Var(Y )′′
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Mean
Notice  and so mean  depends on location parameter  or  depends on

. So we sometimes write .

Examples

Normal :  and hence .
Gamma :  and hence .

Inverse Gaussian :  and hence .

Poisson  with  and hence .
Binomial  with  and hence 

.
Negative Binomial  with  and hence 

.

μ = b (θ)′ μ θ θ

μ θ = θ(μ)

N(μ,σ )2 θ = μ θ(μ) = μ

(α,β) θ = −β/α = −  μ
1 θ(μ) = −  μ

1

(α,β) θ = −  β /α =2
1 2 2 −  2μ2

1 θ(μ) = −  2μ2
1

(μ) θ = logμ θ(μ) = logμ

(m, p) θ = log[p/(1 − p)] = log[μ/(m − μ)] θ(μ) =
log[μ/(m − μ)]

(r, p) θ = log(1 − p) = log(μp/r) θ(μ) =
log(1 − p) = log(μp/r)
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Example
For the gamma  random variable , find .
Answer: The density can be written as

where , , ,

. Then

Therefore,

(α,β) Y θ(μ)

  

f(y) = exp  + c(y;ψ)(
ψ

yθ − b(θ) )

θ = −  

α
β ψ =  

α
1 b(θ) = − log(−θ)

c(y;ψ) =  +
ψ

log  

ψ
1

(  −
ψ
1 1) log y − log Γ(  )

ψ
1

μ = E[Y ] = b (θ) =′ −  .
θ

1

θ(μ) = θ = −  

μ

1

15 / 48



Variance Function
The variance is sometimes expressed as  where clearly

and is called the variance function.

Examples

Normal  with 
Gamma  with 
Inverse Gaussian  with 
Poisson  with 
Binomial  with 
Negative Binomial  with 

Var(Y ) = ψV (μ)

V (μ) = b (θ(μ))′′

N(μ,σ )2 V (μ) = 1

(α,β) V (μ) = μ2

(α,β) V (μ) = μ3

(μ) V (μ) = μ

(m, p) V (μ) = μ(1 − μ/m)

(r, p) V (μ) = μ(1 + μ/r)
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Mean-variance relationship
With linear regression, central
assumption is constant variance
(top left-hand graph)
Count data: response is integer,
lots of zeros—variance may
increase linearly with mean (top
right)
Proportion data: count of number
of failures of events or successes,
variances will be inverted U-
shape (bottom left)
If response follows gamma
distribution (e.g. time-to-death
data), variance increases faster
than linearly with mean (bottom
right).
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Example
Show that the variance function of Gamma  GLM is .
Answer:

where , , .
Note that , and therefore

So 

(α,β) V (μ) = μ2

f(y) = exp  + c(y;ψ)(
ψ

yθ − b(θ) )
θ = −  α

β ψ =  α
1 b(θ) = − log(−θ)

μ = E[Y ] = b (θ) =′ −  

θ
1

θ = −  .
μ

1

V (μ) = b (θ) =′′
 =

θ2
1 μ .2
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The link between both components
The mean  is connected to the linear predictor  through

where  is called the link function.
If , that is, if

we say we have a canonical link, or natural link function.

μ  i x  βi

μ  =i g (x  β) =−1
i g (η  ) or η  =−1

i i g(μ  )i

g

g(⋅) ≡ θ(⋅)

θ  =i η  ,i
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Canonical Link Functions
Some canonical links are:

Distribution Canonical Link Called

Normal Identity

Poisson Log link

Binomial Logit

Gamma Reciprocal

g μ( )

g(μ) = θ(μ) = μ

g(μ) = θ(μ) = logμ

g(μ) = θ(μ) = log  (
m−μ
μ )

g(μ) = θ(μ) = −1/μ
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Summary of GLM components
A GLM models an -vector of independent response variables,  using

1. Random component: For each observation  we use an exponential
dispersion model

where  is the canonical parameter,  is a dispersion parameter and function
 and  are known.

2. Sytematic component: , the linear
predictors with  regression parameters.

3. Parametric link function: the link function  combines the
linear predictor with the mean  The link is called canonical if 

n Y

y  i

f(y  ; θ  ) =i i exp  + c y  ;ψ[
ψ

y  θ  − b θ  i i ( i) ( i )]
θ  i ψ

b(⋅) c(⋅, ⋅)

η  =i x  β =i β  +0 β  x  +1 i1 ⋯ + β  x  p ip

β = (β  ,β  , … ,β  )0 1 p

g(μ  ) =i η  =i x  βi

μ  =i E[Y  ].i θ  =i η  i
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Lecture Outline

Fit a GLM

Introduction to GLMs
The components of a GLM
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Procedure
Constructing a GLM consists of the following steps:

Choose a response distribution  and hence choose .
Choose a link .
Choose explanatory variables  in terms of which  is to be modeled.
Collect observations  on the response  and corresponding values

 on the explanatory variables .
Fit the model by estimating  and, if unknown, .
Given the estimate of , generate predictions (or fitted values) of  for
different settings of  and examine how well the model fits. Also the
estimated value of  will be used to see whether or not given explanatory
variables are important in determining .

f(y  )i b(θ)

g(μ)

x g(μ)

y  , ⋯ , y  1 n y

x  , ⋯ ,x  1 n x

β ψ

β y

X

β

μ

22 / 48



Case Study: Motor claims illustration
Consider the data used in McCullagh and Nelder (1989), page 299, related to
motor claims. So the responses are claims.
There are three factors used:

policyholder age (PA), with 8 levels, 17-20, 21-24, 25-29, etc.
car group (CG), with 4 levels, A, B, C, and D.
vehicle age (VA), with 4 levels, 0-3, 4-7, 8-9, 10+

There are a total of 123 different cells of data.
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Case Study: Motor claims illustration
library(tidyverse)1

2
PCarIns <- read_csv("PrivateCarIns1975-Data.csv")3
PCarIns <- PCarIns %>% filter(Numb.Claims>0) # remove the 3 categories with no claims4

5
str(PCarIns)6

spc_tbl_ [123 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ Pol.Age    : num [1:123] 1 1 1 1 1 1 1 1 1 1 ...
 $ Cpol.Age   : chr [1:123] "17-20" "17-20" "17-20" "17-20" ...
 $ Car.Group  : chr [1:123] "A" "A" "A" "A" ...
 $ Veh.Age    : num [1:123] 1 2 3 4 1 2 3 4 1 2 ...
 $ Cveh.Age   : chr [1:123] "0-3" "4-7" "8-9" "10+" ...
 $ Avg.Claims : num [1:123] 289 282 133 160 372 249 288 11 189 288 ...
 $ Numb.Claims: num [1:123] 8 8 4 1 10 28 1 1 9 13 ...
 - attr(*, "spec")=
  .. cols(
  ..   Pol.Age = col_double(),
  ..   Cpol.Age = col_character(),
  ..   Car.Group = col_character(),
  ..   Veh.Age = col_double(),
  ..   Cveh.Age = col_character(),
  ..   Avg.Claims = col_double(),
  ..   Numb.Claims = col_double()
  .. )
 - attr(*, "problems")=<externalptr> 

# convert to categorical1
PCarIns <-  PCarIns %>% 2
  mutate(Cpol.Age = factor(Cpol.Age),3
         Car.Group = factor(Car.Group),4
         Cveh.Age = factor(Cveh.Age))5
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Case Study: Motor claims illustration
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Case Study: Motor claims illustration
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Case Study: Motor claims illustration

How could we model the relationship between claim Amounts and the
covariates?
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Maximum Likelihood Estimation
The parameters in a GLM are estimated using maximum likelihood.
For each observation  the contribution to the likelihood is

Given vector , an observation of , MLE of  is possible. Since the  are
mutually independent, the likelihood of  is

y  i

f(y  ; θ  ) =i i exp  + c y  ;ψ .[
ψ

y  θ  − b θ  i i ( i) ( i )]
y Y β y  i

β

L(β) =  f(y  ; θ  ).
i=1

∏
n

i i
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Maximum Likelihood Estimation
So for  independent observations , we have

Take log to obtain the log-likelihood as

n y  , y  , … , y  1 2 n

L(y;μ) =  exp  + c y  ;ψ .
i=1

∏
n

[
ψ

y  θ  − b(θ  )i i i ( i )]

ℓ(y;μ) =   + c(y  ;ψ) .
i=1

∑
n

[
ψ

y  θ  − b(θ  )i i i
i ]
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Example
Consider a GLM model with the canonical link and gamma distribution. The
density of response variable is

with .

Moreover, with canonical link, we have .
The log-likelihood is

  

f(y) = exp  + c(y;ψ)(
ψ

yθ − b(θ) )

b(θ) = − log(−θ)

θ  =i θ(μ  ) =i g(μ  ) =i x  βi

ℓ(y;μ) =   + c(y  ;ψ)
i=1

∑
n

(
ψ

y  θ  − b(θ  )i i i
i )
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Example (continued)

Solving  for all  gives the MLE of .

  

 ℓ(y;μ)
∂β  j

∂
=    

i=1

∑
n

ψ

y  − b (θ  )i
′

i

∂β  j

∂θ  i

=   x  

i=1

∑
n

ψ

y  − (−  )i θ  i

1

ij

=   x  

i=1

∑
n

ψ

y  +  i x  βi

1

ij

  x  =∑i=1
n

ψ

y  +  i x  βi

1

ij 0 j β
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Case Study: Motor claims illustration - Gamma
GLM

pcarins.glm <- glm(Avg.Claims~ Cpol.Age + Car.Group + Cveh.Age,  weights=Numb.Claims,1
                   family=Gamma,  data = PCarIns)2
summary(pcarins.glm)3

Call:
glm(formula = Avg.Claims ~ Cpol.Age + Car.Group + Cveh.Age, family = Gamma, 
    data = PCarIns, weights = Numb.Claims)

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    3.411e-03  4.179e-04   8.161 6.31e-13 ***
Cpol.Age21-24  1.014e-04  4.363e-04   0.232 0.816664    
Cpol.Age25-29  3.500e-04  4.124e-04   0.849 0.397942    
Cpol.Age30-34  4.623e-04  4.106e-04   1.126 0.262652    
Cpol.Age35-39  1.370e-03  4.192e-04   3.268 0.001447 ** 
Cpol.Age40-49  9.695e-04  4.046e-04   2.396 0.018284 *  
Cpol.Age50-59  9.164e-04  4.080e-04   2.246 0.026691 *  
Cpol.Age60+    9.201e-04  4.157e-04   2.213 0.028958 *  
Car.GroupB     3.765e-05  1.687e-04   0.223 0.823776    
Car.GroupC    -6.139e-04  1.700e-04  -3.611 0.000463 ***
Car.GroupD    -1.421e-03  1.806e-04  -7.867 2.84e-12 ***
Cveh.Age10+    4.154e-03  4.423e-04   9.390 1.05e-15 ***
Cveh.Age4-7    3.663e-04  1.009e-04   3.632 0.000430 ***
Cveh.Age8-9    1.651e-03  2.268e-04   7.281 5.45e-11 ***
---
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The “Null Model” and “Full Model”
With a GLM we estimate  by 
For  data points we can estimate up to  parameters
Null model: the systematic component is a constant term only.

Only one parameter  too simple
Full or saturated model: Each observation has its own parameter.

All variations can be explained by the covariates  no explanation of data
possible

Y  i   μ̂i

n n

  =μ̂i  , for all i =ȳ 1, 2, … ,n

→

  =μ̂i y  , for all i =i 1, 2, … ,n

→
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Deviance and Scaled Deviance
The log-likelihood in the full model gives

where  are the canonical parameter values corresponding to  for all 
.

ℓ(y;y) =   + c(y  ;ψ)
i=1

∑
n [

ψ

y   − b(  )iθi θi
i ]

 θi μ  =i y  i i =
1, 2, … ,n
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Deviance and Scaled Deviance
Let  denote the M.L.E. of chosen model.
One way of assessing the fit of a given model is to compare it to the model
with the “closest” possible fit: the full model
The likelihood ratio criterion compares a model with its associated full
model.

 is called the deviance and  the scaled deviance.
Deviance plays much the same role for GLMs that RSS plays for ordinary
linear models. (For ordinary linear models, deviance is RSS.)

 μ

  

−2 log  [
L(y;y)
L(y;  )μ ] = 2[ℓ(y;y) − ℓ(y;  )] = 2   −  μ

i=1

∑
n [

ψ

y  (  −  )i θi θi

ψ

b(  ) − b(  )θi θi ]
=  

ψ

D(y,  )μ

D(y,  )μ D(y,  )/ψμ
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Example
The scaled deviance of a gamma  is(α,β)

  

−2 log  [
L(y;y)
L(y;  )μ̂ ] = 2   −  

i=1

∑
n [

ψ

y  (  −  )i θi θi

ψ

b(  ) − b(  )θi θi ]
= 2   −  

i=1

∑
n

[
ψ

y  1/   − 1/y  )i μi i

ψ

log y  − log   i μi ]

=    − log(y  /   ) .
ψ

2

i=1

∑
n

[
  μi

y  −   i μi
i μi ]
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Exponential Dispersions and their Deviances
We drop the subscript 
Deviances are:

Distribution Deviance 

Normal
Poisson

Binomial

Gamma
Inverse Gaussian

i = 1, 2, … ,n

D(y,  )μ̂

(y −∑  )μ̂ 2

2 [y log(y/  ) −∑ μ̂ (y −  )]μ̂

2 [y log(y/  ) +∑ μ̂ (m − y) log((m − y)/(m −
 ))]μ̂

2 [− log(y/  ) +∑ μ̂ (y −  )/  ]μ̂ μ̂

(y −∑  ) /(  y)μ̂ 2 μ̂2
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Scaled Deviance as a Measure of Model Fit
The scaled deviance is actually a measure of the fit of the model. It has
approximately (asymptotically true) a chi-squared distribution with degrees
of freedom equal to the number of observations minus the number of
estimated parameters.

Thus, we can use the scaled deviance usually for comparing models that are
nested (one model is a subset of the other) by looking at the difference in the
deviance and comparing it with the chi-squared table.
Reminder: a significant value (at the 5% level) for a  distribution with 
degrees of freedom is approximately .

 →
ψ

D(y,  )μ̂
χ  when n →n−(p+1)

2 ∞

χ2 ν

2ν
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Model selection
Nested models: Wald test, score test, likelihood ratio test (drop-in deviance
test)

Non-Nested models: Use  (the smaller the better)AIC = −2ℓ(y;  ) +μ 2d
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Model selection (Nested models)
Model 1: ,
Model 2: 

Is Model 2 an improvement over Model 1?

η = β  +0 β  x  +1 1 …β  x  q q

η = β  +0 β  x  +1 1 …β  x  +q q β  x  +q+1 q+1 …β  x  p p

H  :0 β  =q+1 ⋯ = β  =p 0

H  :a at least one β   is non-zeroj
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Model selection (Nested models)
Consider two models,

Model 1:  parameters, with scaled deviance ;
Model 2:  parameters ( ), with scaled deviance .

Model 2 is a significant improvement over Model 1 (a more parsimonious
model), if  the critical value obtained from a  distribution.
Since

the following rule of thumb can be used as an approximation:

q D  1

p p > q D  2

D  −1 D  >2 χ (p −2 q)

P χ (ν) > 2ν ≈[ 2 ] 5%,

model 2 is preferred if D  −1 D  >2 2(p − q).
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Case Study: Motor claims illustration - Null
Model

#Null model1
pcarins.glm.NULL <- glm(Avg.Claims~ 1,  weights=Numb.Claims, family=Gamma, 2
                      data = PCarIns)3
pcarins.glm.NULL4

Call:  glm(formula = Avg.Claims ~ 1, family = Gamma, data = PCarIns, 
    weights = Numb.Claims)

Coefficients:
(Intercept)  
   0.004141  

Degrees of Freedom: 122 Total (i.e. Null);  122 Residual
Null Deviance:      649.9 
Residual Deviance: 649.9    AIC: 99520
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Case Study: Motor claims illustration - Deviance
analysis

#analysis of the deviance table1
print(anova(pcarins.glm, test="Chi"))2

Analysis of Deviance Table

Model: Gamma, link: inverse

Response: Avg.Claims

Terms added sequentially (first to last)

          Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                        122     649.87              
Cpol.Age   7   82.178       115     567.69 3.801e-12 ***
Car.Group  3  228.309       112     339.38 < 2.2e-16 ***
Cveh.Age   3  214.602       109     124.78 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Continued
The scaled deviance statistics are provided below:

Model Deviance First Diff. d.f. Mean Deviance

1 649.9

PA 567.7 82.2 7 11.7
PA+CG 339.4 228.3 3 76.1

PA+CG+VA 124.8 214.7 3 71.6

+PA⋅CG 90.7 34.0 21 1.62
+PA⋅VA 71.0 19.7 21 0.94

+CG⋅VA 65.6 5.4 9 0.60
Complete 0.0 65.6 58 1.13
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Residuals in GLMs
Residuals are a primary tool for assessing how well a model fits the data.
They can also help to detect the form of the variance function and to diagnose
problem observations.
We consider three different kinds of residuals:

deviance residuals:  where  is contribution of th
observation to the scaled deviance (drawing on idea that deviance is akin
to RSS).

Pearson residuals: .

response residuals: they are simply .

r  =i
D sign(y  −i   )  μi d  i d  i i

r  =i
P

 

 V (   )μi

y  −   i μi

y  −i   μi
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Residuals in GLMs (continued)
If the model is correct and the sample size  is large, then the (scaled)
deviance is approximately .

The expected value of the deviance is thus , and one expects each
case to contribute approximately  to the deviance. If  is
much greater than , then case  is contributing too much to the deviance
(contributing to lack of fit), indicating a departure from the model
assumptions for that case.
Typically deviance residuals are examined by plotting them against fitted
values or explanatory variables.

n

χ  n−(p+1)
2

n − (p + 1)
(n − (p + 1))/n ≈ 1 ∣d  ∣i

1 i
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Case Study: Motor claims illustration - Residual
plot(pcarins.glm, which = 1:2)1
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Case Study: Motor claims illustration - Residual
plot(pcarins.glm, which = c(3,5))1
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