
Lab 6: Cross-validation & Regularisation
ACTL3142 and ACTL5110

Questions

Conceptual Questions

1. ⋆ (ISLR2, Q5.3) We now review k-fold cross-validation.

a. Explain how k-fold cross-validation is implemented.

b. What are the advantages and disadvantages of k-fold cross-validation relative to:

• The validation set approach?

• LOOCV?

Solution

2. ⋆ (ISLR2, Q6.2) For parts (a) through (c), indicate which of i. through iv. is correct.
Justify your answer.

a. The lasso, relative to least squares, is:

i. More flexible and hence will give improved prediction accuracy when its increase
in bias is less than its decrease in variance.

ii. More flexible and hence will give improved prediction accuracy when its increase
in variance is less than its decrease in bias.

iii. Less flexible and hence will give improved prediction accuracy when its increase
in bias is less than its decrease in variance.

iv. Less flexible and hence will give improved prediction accuracy when its increase
in variance is less than its decrease in bias.

b. Repeat (a) for ridge regression relative to least squares.

c. Repeat (a) for non-linear methods relative to least squares.

1

Solution

3. ⋆ (ISLR2, Q6.3) Suppose we estimate the regression coefficients in a linear regression
model by minimizing

n∑
i=1

(
yi − β0 −

p∑
j=1

βixij

)2
subject to

p∑
j=1

|βj | ≤ s

for a particular value of s. For parts (a) through (e), indicate which of i. through v. is
correct. Justify your answer.

a. As we increase s from 0, the training RSS will:

i. Increase initially, and then eventually start decreasing in an inverted U shape.

ii. Decrease initially, and then eventually start increasing in a U shape.

iii. Steadily increase.

iv. Steadily decrease.

v. Remain constant.

b. Repeat (a) for test RSS.

c. Repeat (a) for variance.

d. Repeat (a) for (squared) bias.

e. Repeat (a) for the irreducible error.

Solution

4. (ISLR2, Q6.5) It is well-known that ridge regression tends to give similar coefficient values
to correlated variables, whereas the lasso may give quite different coefficient values to
correlated variables. We will now explore this property in a very simple setting.
Suppose that n = 2, p = 2, x11 = x12, x21 = x22. Furthermore, suppose that y1 + y2 = 0
and x11 + x21 = 0 and x12 + x22 = 0, so that the estimate for the intercept in a least
squares, ridge regression, or lasso model is zero: β̂0 = 0.

a. Write out the ridge regression optimization problem in this setting.

b. Argue that in this setting, the ridge coefficient estimates satisfy β̂1 = β̂2.

c. Write out the lasso optimization problem in this setting.

d. Argue that in this setting, the lasso coefficients β̂1 and β̂2 are not unique—in other
words, there are many possible solutions to the optimization problem in (c). Describe
these solutions.

Solution

2

Additional Questions

1. Derive the LOOCV error for linear models:

CV(n) = 1
n

n∑
i=1

(
yi − ŷi

1 − hi

)2

Take note of the Sherman-Morrison formula:

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u

where A is an invertible square matrix, and u, v are column vectors.

Solution

Applied Questions

1. ⋆ (ISLR2, Q5.5) In Chapter 4, we used logistic regression to predict the probability of
default using income and balance on the Default data set. We will now estimate the
test error of this logistic regression model using the validation set approach. Do not
forget to set a random seed before beginning your analysis.

a. Fit a logistic regression model that uses income and balance to predict default.

b. Using the validation set approach, estimate the test error of this model. In order to
do this, you must perform the following steps:

i. Split the sample set into a training set and a validation set.

ii. Fit a multiple logistic regression model using only the training observations.

iii. Obtain a prediction of default status for each individual in the validation set by
computing the posterior probability of default for that individual, and classifying
the individual to the default category if the posterior probability is greater
than 0.5.

iv. Compute the validation set error, which is the fraction of the observations in
the validation set that are misclassified.

c. Repeat the process in (b) three times, using three different splits of the observations
into a training set and a validation set. Comment on the results obtained.

d. Now consider a logistic regression model that predicts the probability of default
using income, balance, and a dummy variable for student. Estimate the test error
for this model using the validation set approach. Comment on whether or not
including a dummy variable for student leads to a reduction in the test error rate.

3

Solution

2. (ISLR2, Q5.7) In Sections 5.3.2 and 5.3.3, we saw that the cv.glm() function can be used
in order to compute the LOOCV test error estimate. Alternatively, one could compute
those quantities using just the glm() and predict.glm() functions, and a for loop. You
will now take this approach in order to compute the LOOCV error for a simple logistic
regression model on the Weekly data set. Recall that in the context of classification
problems, the LOOCV error is given in (5.4).

a. Fit a logistic regression model that predicts Direction using Lag1 and Lag2.

b. Fit a logistic regression model that predicts Direction using Lag1 and Lag2 using
all but the first observation.

c. Use the model from (b) to predict the direction of the first observation.
You can do this by predicting that the first observation will go up if
P(Direction = "Up"|Lag1, Lag2) > 0.5. Was this observation correctly clas-
sified?

d. Write a for loop from i = 1 to i = n, where n is the number of observations in the
data set, that performs each of the following steps:

i. Fit a logistic regression model using all but the ith observation to predict
Direction using Lag1 and Lag2.

ii. Compute the posterior probability of the market moving up for the ith observa-
tion.

iii. Use the posterior probability for the ith observation in order to predict whether
or not the market moves up.

iv. Determine whether or not an error was made in predicting the direction for the
ith observation. If an error was made, then indicate this as a 1, and otherwise
indicate it as a 0.

e. Take the average of the n numbers obtained in (d)iv in order to obtain the LOOCV
estimate for the test error. Comment on the results.

Solution

3. ⋆ (ISLR2, Q5.8) We will now perform cross-validation on a simulated data set.

a. Generate a simulated data set as follows:

set.seed(1)
x <- rnorm(100)
y <- x - 2 * xˆ2 + rnorm(100)

4

In this data set, what is n and what is p? Write out the model used to generate the
data in equation form.

b. Create a scatterplot of X against Y . Comment on what you find.

c. Set a random seed, and then compute the LOOCV errors that result from fitting
the following four models using least squares:

i. Y = β0 + β1X + ϵ

ii. Y = β0 + β1X + β2X2 + ϵ

iii. Y = β0 + β1X + β2X2 + β3X3 + ϵ

iv. Y = β0 + β1X + β2X2 + β3X3 + β4X4 + ϵ

Note you may find it helpful to use the data.frame() function to create a single
data set containing both X and Y .

d. Repeat (c) using another random seed, and report your results. Are your results
the same as what you got in (c)? Why?

e. Which of the models in (c) had the smallest LOOCV error? Is this what you
expected? Explain your answer.

f. Comment on the statistical significance of the coefficient estimates that results from
fitting each of the models in (c) using least squares. Do these results agree with the
conclusions drawn based on the cross-validation results?

Solution

4. ⋆ (ISLR2, Q6.9) In this exercise, we will predict the number of applications received using
the other variables in the College data set.

a. Split the data set into a training set and a test set.

b. Fit a linear model using least squares on the training set, and report the test error
obtained.

c. Fit a ridge regression model on the training set, with λ chosen by cross-validation.
Report the test error obtained.

d. Fit a lasso model on the training set, with λ chosen by cross-validation. Report the
test error obtained, along with the number of non-zero coefficient estimates.

e. Comment on the results obtained. How accurately can we predict the number
of college applications received? Is there much difference among the test errors
resulting from these five approaches?

Solution

5

5. (ISLR2, Q6.10) We have seen that as the number of features used in a model increases,
the training error will necessarily decrease, but the test error may not. We will now
explore this in a simulated data set.

a. Generate a data set with p = 20 features, n = 1, 000 observations, and an associated
quantitative response vector generated according to the model

Y = Xβ + ϵ

where β has some elements that are exactly equal to zero.

b. Split your data set into a training set containing 100 observations and a test set
containing 900 observations.

c. Perform best subset selection on the training set, and plot the training set MSE
associated with the best model of each size.

d. Plot the test set MSE associated with the best model of each size.

e. For which model size does the test set MSE take on its minimum value? Comment
on your results. If it takes on its minimum value for a model containing only an
intercept or a model containing all of the features, then play around with the way
that you are generating the data in (a) until you come up with a scenario in which
the test set MSE is minimized for an intermediate model size.

f. How does the model at which the test set MSE is minimized compare to the true
model used to generate the data? Comment on the coefficient values.

g. Create a plot displaying
√∑p

j=1(βj − β̂ r
j)2 for a range of values of r, where β̂ r

j is
the jth coefficient estimate for the best model containing r coefficients. Comment
on what you observe. How does this compare to the test MSE plot from (d)?

Solution

Solutions

Conceptual Questions

1. Refer to Module 5 lecture slides and Chapter 5 of the book for this question.

2. a. iii. It sets certain variables to zero, and hence is less flexible than least squares.

b. iii. It restricts the size of the parameter estimates, whereas least squares does not.

c. ii. It is more flexible since least squares only does a linear fit.

6

3. a. Increasing s increases the model’s flexibility, which improves the model’s fit on the
training data.

b. Initially, it will decrease as the model fits more signal. However, at some point, the
model will start overfitting the training data, which means the performance on the
test data will worsen.

c. iii. As the model becomes more flexible, its variance will increase.

d. iv. As the model becomes more flexible, its bias will decrease.

e. v. Irreducible error is irreducible.

4. a. Minimise on β:
2∑

i=1
(yi − (β1 + β2)xi1)2 given β2

1 + β2
2 ≤ s

b. To ensure the RSS is minimised as far as possible, we must ensure the range of
β1 + β2 is maximised under the constraint. Consider the case where β1 > β2, in
other words, where β1 = β2 + ϵ for some ϵ > 0. Then, the maximum value of β2
obtainable is:

s = (β2 + ϵ)2 + β2
2

= 2β2
2 + 2ϵβ2 + ϵ2

s

2 − ϵ2

4 = β2
2 + ϵβ2 + ϵ2

4

=
(

β2
2 + ϵ

2

)2

β2 =

√
s

2 − ϵ2

4 − ϵ

2

β1 + β2 = 2

√
s

2 − ϵ2

4
Clearly, this is maximised when ϵ = 0, in other words, when β1 = β2.

c. Minimise on β:
2∑

i=1
(yi − (β1 + β2)xi1)2 given |β1| + |β2| ≤ s

d. Once again, we wish to maximise the range of β1 + β2 subject to the constraint.
Assume β1 = β2 +ϵ, and β1 > 0, β2 ≥ 0. This assumption is robust under all possible
β1 and β2. Then β2 = (s − ϵ)/2, hence β1 + β2 = s. Therefore, any combination of
β1, β2, provided they consume the entire budget implied by λ, they have the same
sign, and the sign is the same as yixi1.

7

Additional Questions

1. Let:

• Y−i denote the response vector without the ith observation
• X−i denote the design matrix without the ith observation
• β̂−i denote the parameter estimates after regressing without the ith observation
• xT

i denote the ith observation’s predictor values (i.e. the ith row of the design
matrix).

All other variables have their normal meaning.

To start with, note that

CV(n) = 1
n

n∑
i=1

(yi − ŷi,−i)2

Where ŷi,−i is the predicted value of yi after the ith observation has been left out.

Now,
ŷi,−i = xT

i β̂−i

We shall work on β̂−i

β̂−i = (XT
−iX−i)−1XT

−iY−i

Use Sherman-Morrison to obtain a value of (XT
−iX−i)−1.

XT
−iX−i = XT X − xix

T
i

(XT
−iX−i)−1 = (XT X)−1 + (XT X)−1xix

T
i (XT X)−1

1 − xT
i (XT X)−1xi

= (XT X)−1 + (XT X)−1xix
T
i (XT X)−1

1 − hi

XT
−iY−i = XT Y − xiyi

Multiply (XT
−iX−i)−1 and X−iT Y−i and simplify to obtain an expression for β̂−i.

β̂−i =
(

(XT X)−1 + (XT X)−1xix
T
i (XT X)−1

1 − hi

)
(XT Y − xiyi)

= (XT X)−1XT Y + (XT X)−1xix
T
i (XT X)−1XT Y

1 − hi
− (XT X)−1xiyi−

(XT X)−1xix
T
i (XT X)−1xiyi

1 − hi

= β̂ + (XT X)−1xix
T
i β̂

1 − hi
− (XT X)−1xiyi − (XT X)−1xihiyi

1 − hi

8

Now right-multiply by xi to find the prediction for ŷ−i,i

ŷi,−i = xT
i β̂ + xT

i (XT X)−1xix
T
i β̂

1 − hi
− xT

i (XT X)−1xiyi − xT
i (XT X)−1xihiyi

1 − hi

= xT
i β̂ + hix

T
i β̂

1 − hi
− hiyi − h2

i yi

1 − hi

= xT
i β̂ − hiyi

1 − hi

yi − ŷi,−i = yi − hiyi − xT
i β̂ + hiyi

1 − hi

= yi − xT
i β̂

1 − hi

= yi − ŷi

1 − hi

∴ CV(n) = 1
n

n∑
i=1

(
yi − ŷi

1 − hi

)2

Applied Questions

1. a. require(ISLR2)

Loading required package: ISLR2

fit <- glm(default ~ income + balance, family = binomial, data = Default)

b. i. train <- sample(dim(Default)[1], dim(Default)[1] / 2)
train <- seq(1, dim(Default)[1]) %in% train

ii. fit.train <- glm(default ~ balance + income,
data = Default, subset = train,
family = binomial

)

iii. predicted <- rep("No", dim(Default)[1] / 2) # create a vector "predicted"
responses <- predict(fit.train, newdata = Default[!train,], type = "response")
predicted[responses > 0.5] <- "Yes"

iv. table(true = Default$default[!train], pred = predicted)

pred
true No Yes

No 4801 25
Yes 121 53

9

100 * mean(predicted != Default$default[!train]) # test error rate

[1] 2.92

100 * (108 + 19) / (4824 + 19 + 108 + 49) # test error rate check

[1] 2.54

The error rate is about 2.54%.

c. for (i in 2:4) {
set.seed(i)
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
train <- seq(1, dim(Default)[1]) %in% train
fit.train <- glm(default ~ balance + income,

data = Default, subset = train,
family = binomial

)
predicted <- rep("No", dim(Default)[1] / 2)
responses <- predict(fit.train, newdata = Default[!train,], type = "response")
predicted[responses > 0.5] <- "Yes"
curr.table <- table(true = Default$default[!train], pred = predicted)
print(100 * (curr.table[2, 1] + curr.table[1, 2]) / 5000)

}

[1] 2.38
[1] 2.64
[1] 2.56

Error rates are not constant, but are hovering around the mid 2% mark.

d. for (i in 1:4) {
set.seed(i)
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
train <- seq(1, dim(Default)[1]) %in% train
fit.train <- glm(default ~ balance + income + student,

data = Default, subset = train,
family = binomial

)
predicted <- rep("No", dim(Default)[1] / 2)
responses <- predict(fit.train, newdata = Default[!train,], type = "response")
predicted[responses > 0.5] <- "Yes"
curr.table <- table(true = Default$default[!train], pred = predicted)
print(100 * (curr.table[2, 1] + curr.table[1, 2]) / 5000)

}

10

[1] 2.6
[1] 2.46
[1] 2.72
[1] 2.62

The error rates are about the same. The inclusion of the new predictor didn’t
improve the fit.

2. a. require(ISLR2)
fit <- glm(Direction ~ Lag1 + Lag2, data = Weekly, family = binomial)

b. fit2 <- glm(Direction ~ Lag1 + Lag2, data = Weekly[-1,], family = binomial)

c. pred <- predict(fit2, newdata = Weekly[1,], type = "response")
class <- "No"
if (pred > 0.5) {

class <- "Yes"
}
pred # probability predicted

1
0.5713923

class # class predicted

[1] "Yes"

Weekly$Direction[1] # real class

[1] Down
Levels: Down Up

class %in% Weekly$Direction[1] # prediction not correctly classified

[1] FALSE

No. It’s not correctly classified.

d. errors <- rep(1, dim(Weekly)[1])
for (i in 1:dim(Weekly)[1]) {

fit <- glm(Direction ~ Lag1 + Lag2, data = Weekly[-i,], family = binomial)
pred <- predict(fit2, newdata = Weekly[i,], type = "response")
class <- "Down"
if (pred > 0.5) {

class <- "Up"
}
if (class == Weekly$Direction[i]) {

11

errors[i] <- 0
}

}

e. sum(errors) / length(errors)

[1] 0.4435262

About 44%. Not really much better than tossing a coin.

3. a. n = 100, p = 2. Model equation is Y = X − 2X2 + ϵ.

b. set.seed(1)
x <- rnorm(100) # mean 0 and sd 1
y <- x - 2 * xˆ2 + rnorm(100)
plot(x, y)

−2 −1 0 1 2

−
10

−
5

0

x

y

The plot is quadratic. X from about -2 to 2. Y from about -10 to 2.

c. myData <- data.frame(Y = y, X1 = x, X2 = xˆ2, X3 = xˆ3, X4 = xˆ4)

set.seed(1)
fit <- lm(Y ~ X1, data = myData)
fit.hat <- hat(myData$X1)
errors[1] <- mean(((myData$Y - fit$fitted.values) / (1 - fit.hat))ˆ2)
LOOCV shortcut for linear models
summary(fit)

fit <- lm(Y ~ X1 + X2, data = myData)
fit.hat <- hat(cbind(myData$X1, myData$X2))
errors[2] <- mean(((myData$Y - fit$fitted.values) / (1 - fit.hat))ˆ2)
summary(fit)

12

fit <- lm(Y ~ X1 + X2 + X3, data = myData)
fit.hat <- hat(cbind(myData$X1, myData$X2, myData$X3))
errors[3] <- mean(((myData$Y - fit$fitted.values) / (1 - fit.hat))ˆ2)
summary(fit)

fit <- lm(Y ~ X1 + X2 + X3 + X4, data = myData)
fit.hat <- hat(cbind(myData$X1, myData$X2, myData$X3, myData$X4))
errors[4] <- mean(((myData$Y - fit$fitted.values) / (1 - fit.hat))ˆ2)
summary(fit)

d. (Regardless of the seed chosen) LOOCV returned the same results. This method,
unlike validation set, is not random, and the method of fitting is not random either.

e. The second model with X1 and X2 as predictors. This is what was expected, since
that is the model used to generate the data in the first place.

f. Use summary(fit) with the previous commands to quickly check coefficient estimate
significance. The conclusions drawn by checking the parameter estimates’ significance
is the same as that of LOOCV. For the underfitted model 1, the parameter is not
significant. For the overfitted models 3 and 4, the extra parameters (X3, X4) are
not significant, suggesting that Y = X + X2 is the best model to use.

4. a. library(ISLR2)
set.seed(1)
train.set <- sample(length(College[, 1]), length(College[, 1]) / 2)
train <- (seq(1, length(College[, 1])) %in% train.set)

b. fit <- lm(Apps ~ ., data = College, subset = train)
pred <- predict(fit, newdata = College[!train,])
mean(fit$residualsˆ2) # training error

[1] 1118449

mean((pred - College[!train,]$Apps)ˆ2) # test error

[1] 1135758

c. library(glmnet)

Loading required package: Matrix

Loaded glmnet 4.1-8

13

lambda.grid <- 10ˆseq(10, -2, length.out = 100)
set.seed(1)
College.modelmatrix <- model.matrix(Apps ~ ., College)[, -1]
fit2 <- glmnet(College.modelmatrix[train,], as.matrix(College[train, 2]),

alpha = 0, lambda = lambda.grid
)
cv.fit2 <- cv.glmnet(College.modelmatrix[train,],

as.matrix(College[train, 2]),
alpha = 0, lambda = lambda.grid

)
plot(cv.fit2)

−5 0 5 10 15 20

5.
0e

+
06

2.
0e

+
07

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

17 17 17 17 17 17 17 17 17 17 17 17

mean((College[!train, "Apps"] - predict(fit2,
s = cv.fit2$lambda.min,
newx <- College.modelmatrix[!train,]

))ˆ2)

[1] 1134677

The test mean-squared error is 1.1346768 × 106

d. set.seed(1)
fit2 <- glmnet(College.modelmatrix[train,], as.matrix(College[train, 2]),

alpha = 1, lambda = lambda.grid
)
cv.fit2 <- cv.glmnet(College.modelmatrix[train,], as.matrix(College[train, 2]),

alpha = 1, lambda = lambda.grid
)
plot(cv.fit2)

14

−5 0 5 10 15 20

5.
0e

+
06

2.
0e

+
07

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

17 17 17 13 4 2 1 0 0 0 0 0 0 0 0

predict(fit2, type = "coefficients", s = cv.fit2$lambda.min)

18 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) -7.931498e+02
PrivateYes -3.078903e+02
Accept 1.777242e+00
Enroll -1.450532e+00
Top10perc 6.659456e+01
Top25perc -2.221506e+01
F.Undergrad 8.983869e-02
P.Undergrad 1.005260e-02
Outstate -1.082871e-01
Room.Board 2.118762e-01
Books 2.922508e-01
Personal 6.234085e-03
PhD -1.542914e+01
Terminal 6.364841e+00
S.F.Ratio 2.284667e+01
perc.alumni 1.114025e+00
Expend 4.861825e-02
Grad.Rate 7.466015e+00

mean((College[!train, "Apps"] - predict(fit2,
s = cv.fit2$lambda.min,
newx <- College.modelmatrix[!train,]

))ˆ2)

15

[1] 1133422

There is a different fit here. The MSE is now 1.1334221 × 106.

e. The MSE in the case of Lasso seems to have done the best, although almost all
models have achieved relatively close MSE values.

5. a. set.seed(1)
myData <- matrix(nrow = 1000, ncol = 20)
myMeans <- runif(20, min = 100, max = 1000)
myVarScaling <- runif(20, min = 1, max = 4)
trueCoef <- rep(0, 20)
for (i in 1:20) {

myData[, i] <- rnorm(1000, mean = myMeans[i], sd = myMeans[i] * myVarScaling[i])
if (rnorm(1) < 0) {

trueCoef[i] <- runif(1, min = myMeans[i] * 0.01, max = myMeans[i] * 0.2)
}

}
trueConst <- 5000
noise <- rnorm(1000, 0, max(myMeans * myVarScaling))
Y <- myData %*% trueCoef + noise + trueConst
myData <- data.frame(Y = Y, myData)

b. train.set <- sample(1000, 100)
train <- (seq(1, 1000) %in% train.set)

c. library(leaps)
fit3 <- regsubsets(x = myData[, -1], y = Y, nvmax = 20)
fit3.sum <- summary(fit3)
trainMSE <- rep(0, 20)
for (i in 1:20) {

currfit <- lm(Y ~ ., data = myData[train, fit3.sum$which[i,]])
trainMSE[i] <- mean((Y[train] - currfit$fitted.values)ˆ2)

}
plot(seq(1:20), trainMSE, type = "l")

16

5 10 15 20

0e
+

00
6e

+
10

seq(1:20)

tr
ai

nM
S

E

d. testMSE <- rep(0, 20)
for (i in 1:20) {

currfit <- lm(Y ~ ., data = myData[train, fit3.sum$which[i,]])
testMSE[i] <- mean((Y[!train] - predict(currfit, newdata = myData[!train,]))ˆ2)

}
plot(seq(1:20), testMSE, type = "l", log = "y")

5 10 15 20

1e
+

07
1e

+
09

1e
+

11

seq(1:20)

te
st

M
S

E

e. coef(fit3, 13)

(Intercept) X1 X2 X3 X4 X5
5091.100465 53.681512 85.890521 70.809849 121.863743 8.966963

X8 X11 X12 X14 X15 X16
29.818868 3.412561 12.050038 67.342103 75.577635 41.301243

X17 X19
107.697093 33.601406

17

In our case, the test MSE is minimised at when the model has 14 predictors.

f. The model’s estimates are all very close to the true coefficients in the vector trueCoef.

g. coefError <- rep(0, 20)
for (i in 1:20) {

currNum <- 1
coefError[i] <- (trueConst - coef(fit3, i)[currNum])ˆ2
for (j in 2:21) {

if (fit3.sum$which[i, j]) {
currNum <- currNum + 1
coefError[i] <- coefError[i] + (trueCoef[j - 1]
- coef(fit3, i)[currNum])ˆ2

} else {
coefError[i] <- coefError[i] + trueCoef[j - 1]ˆ2

}
}

}
plot(1:20, sqrt(coefError), type = "l")

5 10 15 20

0e
+

00
2e

+
05

1:20

sq
rt

(c
oe

fE
rr

or
)

We attain a similar (but slightly different) result here in that this error is minimised
when there are 14 parameters within the model (as opposed to 13 which minimised
the test MSE). However, we can see that the extra parameter added X13 has a small
coefficient value.

18

	Questions
	Conceptual Questions
	Additional Questions
	Applied Questions

	Solutions
	Conceptual Questions
	Additional Questions
	Applied Questions

