
Lab 7: Moving Beyond Linearity
ACTL3142 and ACTL5110

Questions

Conceptual Questions

1. ⋆ (ISLR2, Q7.2) Suppose that a curve ĝ is computed to smoothly fit a set of n points
using the following formula:

ĝ = arg min
g

(
n∑
i

(
yi − g(xi)

)2 + λ

∫ [
g(m)(x)

]2dx

)
,

where g(m) represents the mth derivative of g (and g(0) = g). Provide example sketches
of ĝ in each of the following scenarios.

a. λ = ∞, m = 0.

b. λ = ∞, m = 1.

c. λ = ∞, m = 2.

d. λ = ∞, m = 3.

e. λ = 0, m = 3.

Solution

2. ⋆ (ISLR2, Q7.3) Suppose we fit a curve with basis functions b1(X) = X, b2(X) =
(X − 1)2I(X ≥ 1). (Note that I(X ≥ 1) equals 1 for X ≥ 1 and 0 otherwise.) We fit the
linear regression model

Y = β0 + β1b1(X) + β2b2(X) + ϵ,

and obtain coefficient estimates β̂0 = 1, β̂1 = 1, β̂2 = −2. Sketch the estimated curve
between X = −2 and X = 2. Note the intercepts, slopes, and other relevant information.

Solution
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3. (ISLR2, Q7.4) Suppose we fit a curve with basis functions

b1(X) = I(0 ≤ X ≤ 2) − (X − 1)I(1 ≤ X ≤ 2),

b2(X) = (X − 3)I(3 ≤ X ≤ 4) + I(4 < X ≤ 5).

We fit the linear regression model

Y = β0 + β1b1(X) + β2b2(X) + ϵ,

and obtain coefficient estimates β̂0 = 1, β̂1 = 1, β̂2 = 3 . Sketch the estimated curve
between X = −2 and X = 6. Note the intercepts, slopes, and other relevant information.

Solution

4. ⋆ (ISLR2, Q7.5) Consider two curves, ĝ1 and ĝ2, defined by

ĝ1 = arg min
g

(
n∑
i

(yi − g(xi))2 + λ

∫ [
g(3)(x)

]2
dx

)
,

ĝ2 = arg min
g

(
n∑
i

(yi − g(xi))2 + λ

∫ [
g(4)(x)

]2
dx

)
,

where g(m) represents the mth derivative of g.

a. As λ → ∞, will ĝ1 or ĝ2 have the smaller training RSS?

b. As λ → ∞ will ĝ1 or ĝ2 have the smaller test RSS?

c. For λ = 0, will ĝ1 or ĝ2 have the smaller training and test RSS?

Solution

Applied Questions

1. (ISLR2, Q7.6) In this exercise, you will further analyze the Wage data set considered
throughout this chapter.

a. Perform polynomial regression to predict wage using age. Use cross-validation to
select the optimal degree d for the polynomial. What degree was chosen, and how
does this compare to the results of hypothesis testing using ANOVA? Make a plot
of the resulting polynomial fit to the data.

b. Fit a step function to predict wage using age, and perform crossvalidation to choose
the optimal number of cuts. Make a plot of the fit obtained.

Solution
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2. (ISLR2, Q7.9) ⋆ This question uses the variables dis (the weighted mean of distances
to five Boston employment centers) and nox (nitrogen oxides concentration in parts per
10 million) from the Boston data. We will treat dis as the predictor and nox as the
response.

a. Use the poly() function to fit a cubic polynomial regression to predict nox using
dis. Report the regression output, and plot the resulting data and polynomial fits.

b. Plot the polynomial fits for a range of different polynomial degrees (say, from 1 to
10), and report the associated residual sum of squares.

c. Perform cross-validation or another approach to select the optimal degree for the
polynomial, and explain your results.

d. Use the bs() function to fit a regression spline to predict nox using dis. Report the
output for the fit using four degrees of freedom. How did you choose the knots?
Plot the resulting fit.

e. Now fit a regression spline for a range of degrees of freedom, and plot the resulting
fits and report the resulting RSS. Describe the results obtained.

f. Perform cross-validation or another approach in order to select the best degrees of
freedom for a regression spline on this data. Describe your results.

Solution

Solutions

Conceptual Questions

1. a. Since λ → ∞, any non-zero value of
∫

(g(m)(x))2dx will lead to an infinite penalty.
Hence, it must integrate to zero, which can only occur if g(m)(x) = 0. For m = 0,
this will occur at g(x) = 0.

b. The optimisation will find the best curve that fits the data provided g(m)(x) = 0.
So, if m = 1, g(x) = k, where k is the mean of the yis.

c. g(x) will be the straight line of best fit for the data

d. g(x) will the be quadratic (parabola) of best fit for the data

e. Since λ = 0, the smoothness penalty is ignored. Hence g will be the polynomial that
goes through all the data points.
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2. The sketch should look like:

Figure 1: Solution

3. The sketch should look like:
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Figure 2: Solution

4. a. ĝ2 will correspond to the cubic polynomial of best fit for the data and ĝ1 to the
quadratic (parabola) of best fit for the data. Therefore, since a cubic polynomial is
more flexible than a cuadratic polynomial, ĝ2 should have the better training RSS

b. ĝ1, conventionally, since it is not as likely to overfit the data. However, ĝ2 may
outperform it if the underlying trend is more cubic than quadratic.

c. If λ = 0, then both optimisations are doing the same thing, so neither one is better
or worse than the other.

Applied Questions

1. a. library(ISLR2)
library(boot)
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fit1 <- glm(wage ~ age, data = Wage)
# try using an iterative (and somewhat naive) ANOVA method
degree <- 1
while (tail(summary(fit1)$coefficients[, 4], 1) < 0.05) {

degree <- degree + 1
fit1 <- glm(wage ~ poly(age, degree, raw = TRUE), data = Wage)

}

According to this method, the best fit is when we use degree 3. Let us try CV as
the question suggests.

set.seed(1)
cv.error <- rep(0, 5)
for (i in 1:5) {

fit1 <- glm(wage ~ poly(age, i, raw = TRUE), data = Wage)
cv.error[i] <- cv.glm(Wage, fit1)$delta[1]

}
plot(1:5, cv.error, type = "l")
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It seems like the best choice is between degrees 3, 4 and 5.

fit3 <- lm(wage ~ poly(age, 3, raw = TRUE), data = Wage)
fit4 <- lm(wage ~ poly(age, 4, raw = TRUE), data = Wage)
fit5 <- lm(wage ~ poly(age, 5, raw = TRUE), data = Wage)
age.grid <- data.frame(age = seq(from = 18, to = 80, length.out = 100))
pred3 <- predict(fit3, age.grid)
pred4 <- predict(fit4, age.grid)
pred5 <- predict(fit5, age.grid)

library(ISLR2)
plot(Wage$age, Wage$wage, col = "grey")
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lines(age.grid$age, pred3, col = "blue")
lines(age.grid$age, pred4, col = "red")
lines(age.grid$age, pred5, col = "green")
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The plots are clearly very close to each other.

b. cv.error <- rep(0, 9)
myWage <- Wage
for (i in 2:10) {

myWage["age.fact"] <- cut(myWage$age, i)
fit <- glm(wage ~ age.fact, data = myWage)
cv.error[i - 1] <- cv.glm(myWage, fit, K = 10)$delta[1]

}
plot(2:10, cv.error, type = "l")
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It seems like 8 cut-points is appropriate here.
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myWage["age.fact"] <- cut(myWage$age, 8)
fit <- glm(wage ~ age.fact, data = myWage)
plot(Wage$age, Wage$wage, col = "grey")
points(myWage$age, fit$fitted.values, col = "blue")
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2. a. library(ISLR2)
fit <- lm(nox ~ poly(dis, 3, raw = TRUE), data = Boston)
dis.grid <- seq(min(Boston$dis), max(Boston$dis), length.out = 100)
pred <- predict(fit, newdata = list(dis = dis.grid))
plot(Boston$dis, Boston$nox, xlab = "dis", ylab = "nox")
lines(dis.grid, pred)
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b. rss <- rep(0, 10)
colours <- c(

"red", "blue", "green", "brown", "orange", "purple",
"pink", "yellow", "violet", "magenta"
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)
plot(Boston$dis, Boston$nox, xlab = "dis", ylab = "nox")
for (i in 1:10) {

fit <- lm(nox ~ poly(dis, i, raw = TRUE), data = Boston)
rss[i] <- sum(fit$residualsˆ2)
pred <- predict(fit, newdata = list(dis = dis.grid))
lines(dis.grid, pred, col = colours[i])

}
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c. cv.error <- rep(0, 10)
for (i in 1:10) {

fit <- glm(nox ~ poly(dis, i, raw = TRUE), data = Boston)
cv.error[i] <- cv.glm(Boston, fit, K = 10)$delta[1]

}
plot(1:10, cv.error, type = "l")
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It looks like a degree of 3 is best.

d. library(splines)
fit <- lm(nox ~ bs(dis, df = 4), data = Boston)
# note that by default, the bs function does not include
# the intercept term in the basis generated
pred <- predict(fit, newdata = list(dis = dis.grid))
plot(Boston$dis, Boston$nox, col = "gray")
lines(dis.grid, pred, lwd = 2)
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e. plot(Boston$dis, Boston$nox, col = "gray")
rss <- rep(0, 10)
for (i in 4:13) {

fit <- lm(nox ~ bs(dis, df = i), data = Boston)
rss[i - 3] <- sum(fit$residualsˆ2)
pred <- predict(fit, newdata = list(dis = dis.grid))
lines(dis.grid, pred, col = colours[i])

}
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f. set.seed(1)
cv.error <- rep(0, 10)
options(warn=-1)
for (i in 4:13) {

fit <- glm(nox ~ bs(dis, df = i), data = Boston)
cv.error[i - 3] <- cv.glm(Boston, fit, K = 10)$delta[1]

}
options(warn=0) # reset to default
plot(4:13, cv.error, type = "l", xlab = "df")
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