
Moving Beyond Linearity
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications
Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with

permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

1 / 59

Lecture Outline

Linearity & Nonlinearity

Data Science Starts With Data
Linear Regression

Polynomial Regression
Step Functions
Regression Splines

Smoothing Splines
Local Regression

Generalised Additive Models (GAMs)

2 / 59

Nonlinear curves

The legend of the Laffer curve goes
like this: Arthur Laffer, then an
economics professor at the University
of Chicago, had dinner one night in
1974 with Dick Cheney, Donald
Rumsfeld, and Wall Street Journal
editor Jude Wanniski at an upscale
hotel restaurant in Washington DC.
They were tussling over President
Ford’s tax plan, and eventually, as
intellectuals do when the tussling gets
heavy, Laffer commandeered a napkin
and drew a picture. The picture
looked like this: Laffer curve

Source: Jordan Ellenberg (2014), How Not to Be Wrong: The Power of Mathematical Thinking

3 / 59

One predictor vs multiple predictors

sales ≈ β +0 β ×1 TV

Linear regression

sales ≈ β +0 β ×1 TV + β ×2 radio

Multiple linear regression

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figures 3.1 & 3.5.

4 / 59

By the end of today

Instead of just fitting lines (linear regression) or
hyperplanes (multiple linear regression)…

You’ll be able to fit nonlinear curves to multivariate
data using splines and Generalised Additive Models.

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figures 2.4 & 2.6.

5 / 59

Moving beyond linearity

Linear models are highly
interpretable
Linear assumption can be very
unrealistic
Look for interpretable nonlinear
models
A machine learning view, not a
statistical view

1. Polynomial regression
2. Step functions
3. Regression splines
4. Smoothing splines
5. Local regression
6. Generalised additive models

Using a term like nonlinear science is like referring to the bulk of zoology as
the study of non-elephant animals. (Stanisław Ulam)

6 / 59

In-class demonstration

Some mystery data

7 / 59

Instructions

I want you to ‘fit’ the data four different ways by drawing:

Top left: a straight line

Draw a single straight line
Don’t lift your pen from the page

Bottom left: a step function

Draw a sequence of flat lines
Lift your pen between each line

Top right: a quadratic curve

Draw a single smiley-face curve
Don’t lift your pen from the page

Bottom right: a smooth curve

Draw a single curve of any shape
Avoid jagged changes of direction

8 / 59

Lecture Outline

Data Science Starts With Data

Linearity & Nonlinearity

Linear Regression

Polynomial Regression
Step Functions
Regression Splines

Smoothing Splines
Local Regression

Generalised Additive Models (GAMs)

9 / 59

Luxembourg Mortality Data
Download a file called Mx_1x1.txt from the .
No-one is allowed to distribute the data, but you can download it for free. Here
are the first few rows to get a sense of what it looks like.

Human Mortality Database

Luxembourg, Death rates (period 1x1), Last modified: 09 Aug 2023; Methods Protocol: v6 (2017)

 Year Age Female Male Total
 1960 0 0.023863 0.039607 0.031891
 1960 1 0.001690 0.003528 0.002644
 1960 2 0.001706 0.002354 0.002044
 1960 3 0.001257 0.002029 0.001649
 1960 4 0.000844 0.001255 0.001051
 1960 5 0.000873 0.001701 0.001293
 1960 6 0.000443 0.000430 0.000437

10 / 59

https://www.mortality.org/

Setup & importing the data
R Python

lux <- read_table("Mx_1x1.txt", skip = 2, show_col_types = FALSE) %>%1
 rename(age=Age, year=Year, mx=Female) %>%2
 select(age, year, mx) %>%3
 filter(age != '110+') %>%4
 mutate(year = as.integer(year), age = as.integer(age), mx = as.numeric(mx))5

lux1

A tibble: 6,930 × 3
 age year mx
 <int> <int> <dbl>
 1 0 1960 0.0239
 2 1 1960 0.00169
 3 2 1960 0.00171
 4 3 1960 0.00126
 5 4 1960 0.000844
 6 5 1960 0.000873
 7 6 1960 0.000443
 8 7 1960 0
 9 8 1960 0.000951
10 9 1960 0
ℹ 6,920 more rows

summary(lux)1

 age year mx
 Min. : 0.0 Min. :1960 Min. :0.0000
 1st Qu.: 27.0 1st Qu.:1975 1st Qu.:0.0004
 Median : 54.5 Median :1991 Median :0.0034
 Mean : 54.5 Mean :1991 Mean :0.0920
 3rd Qu.: 82.0 3rd Qu.:2007 3rd Qu.:0.0418
 Max. :109.0 Max. :2022 Max. :6.0000
 NA's :358

11 / 59

Mortality
R Python

12 / 59

Mortality (zoom in)
R Python

lux <- lux %>% filter(age <= 90)1

13 / 59

Log-mortality
R Python

lux$log_mx <- log(lux$mx)1
lux <- lux[lux$log_mx != -Inf,]2

14 / 59

Linear regression
R Python

lux_2020 <- lux %>% filter(year == 2020)1
model_lr <- lm(log_mx ~ age, data = lux_2020)2

15 / 59

Quadratic regression
R Python

model_quad <- lm(log_mx ~ poly(age, 2), data = lux_2020)1

16 / 59

Step function regression
R Python

model_step <- lm(log_mx ~ cut(age, seq(0, 90, 10), right=F), data = lux_2020)1

17 / 59

Regression spline
R Python

model_spline <- lm(log_mx ~ bs(age, degree=10), data=lux_2020) # Requires splines package1

18 / 59

Industry approaches
Methods from this class (p. 8–9):

ridge regression
lasso regression
elastic net
generalised linear models
generalised additive models
random forests
dimension reduction
(artificial neural networks)

Take ACTL3141/ACTL5104 for
mortality modelling,

 for actuarial AIIFoA bulletin on machine learning in
mortality modelling ACTL3143/ACTL5111

19 / 59

https://actuaries.org.uk/media/mwbojehy/longevity-bulletin-issue-15.pdf
https://actuaries.org.uk/media/mwbojehy/longevity-bulletin-issue-15.pdf
https://laub.au/ai

Lecture Outline

Linear Regression

Linearity & Nonlinearity
Data Science Starts With Data

Polynomial Regression
Step Functions
Regression Splines

Smoothing Splines
Local Regression

Generalised Additive Models (GAMs)

19 / 59

Plotting the fitted values
R Python

ggplot(lux_2020, aes(x = age, y = log_mx)) + theme_minimal() +1
 geom_point(aes(y = predict(model_lr)), color = "red", size = 2) +2
 geom_point(alpha = 0.75, size = 2) + labs(x = "Age", y = "Log-Mortality")3

20 / 59

Linear regression with error bars
R Python

ggplot(lux_2020, aes(x = age, y = log_mx)) + theme_minimal() +1
 geom_smooth(method = "lm", formula = y ~ x, color = "red", linewidth=2) +2
 geom_point(alpha = 0.75) + labs(x = "Age", y = "Log Mortality")3

20 / 59

Interpolating
R Python

df_grid <- data.frame(age = seq(25, 35, by = 0.5))1
df_grid$log_mx <- predict(model_lr, newdata = df_grid)2

21 / 59

Extrapolating
R Python

df_grid <- data.frame(age = seq(40, 130))1
df_grid$log_mx <- predict(model_lr, newdata = df_grid)2

22 / 59

Multiple linear regression

Fitting:

Predicting:

df_mlr = lux[c("age", "year", "log_mx")]1
head(df_mlr)2

A tibble: 6 × 3
 age year log_mx
 <int> <int> <dbl>
1 0 1960 -3.74
2 1 1960 -6.38
3 2 1960 -6.37
4 3 1960 -6.68
5 4 1960 -7.08
6 5 1960 -7.04

linear_model <- lm(log_mx ~ age + year, data = df_mlr)1

new_point <- data.frame(year = 2040, age = 20)1
predict(linear_model, newdata = new_point)2

 1
-8.66

coef(linear_model)1

(Intercept) age year
34.58222358 0.07287039 -0.02191158

23 / 59

Fitted multiple linear regression
24 / 59

Link to interactive notebook

See the for a high-level view of these methodsspline demo notebook

25 / 59

https://unsw-risk-and-actuarial-studies.github.io/ACTL3142/M6-Moving-Beyond-Linearity/splines.html

Lecture Outline

Polynomial Regression

Linearity & Nonlinearity
Data Science Starts With Data
Linear Regression

Step Functions
Regression Splines

Smoothing Splines
Local Regression

Generalised Additive Models (GAMs)

25 / 59

Polynomial regression
Extend the standard linear model

to

Relaxes the assumption that predictor and response are linearly related
Works almost identically to multiple linear regression, except the other
“predictors” are just transformations of the initial predictor

Y =i β +0 β x +1 i ε i

Y =i β +0 β x +1 i β x +2 i
2 ⋯ + β x +d i

d ε i

26 / 59

Quadratic regression (by hand)

We just tricked R into thinking that
age2 is a separate variable!

This is a linear model of a nonlinearly transformed variable.

df_pr <- data.frame(age = lux_2020$age, age2 = lux_2020$age^2, log_mx = lux_2020$log_mx)1
head(df_pr)2

 age age2 log_mx
1 0 0 -5.363176
2 6 36 -8.111728
3 15 225 -6.949619
4 16 256 -8.040959
5 18 324 -7.389022
6 21 441 -8.159519

poly_model <- lm(log_mx ~ age + age2,1
 data = df_pr)2
coef(poly_model)3

 (Intercept) age age2
-7.065977594 -0.066603952 0.001421058

bad_x <- data.frame(age = 20, age2 = 20)1
predict(poly_model, newdata = bad_x)2

 1
-8.369635

27 / 59

The poly function

Now we can’t put in age^2 as a
separate variable.

df_pr <- data.frame(age = lux_2020$age, log_mx = lux_2020$log_mx)1
head(df_pr)2

 age log_mx
1 0 -5.363176
2 6 -8.111728
3 15 -6.949619
4 16 -8.040959
5 18 -7.389022
6 21 -8.159519

poly_model <- lm(log_mx ~ poly(age, 2),1
 data = df_pr)2
coef(poly_model)3

 (Intercept) poly(age, 2)1 poly(age, 2)2
 -5.787494 14.534731 6.376355

new_input <- data.frame(age = 20)1
predict(poly_model, newdata = new_input)2

 1
-7.829633

28 / 59

Quadratic regression with error bars
ggplot(lux_2020, aes(x = age, y = log_mx)) + theme_minimal() +1
 stat_smooth(method = "lm", formula = y ~ poly(x, 2), color = "red", linewidth=2) +2
 geom_point(alpha = 0.75) + labs(x = "Age", y = "Log-Mortality")3

28 / 59

Polynomial expansion
head(lux$age)1

[1] 0 1 2 3 4 5

age_poly <- model.matrix(~ poly(age, 2), data = lux)1
head(age_poly)2

 (Intercept) poly(age, 2)1 poly(age, 2)2
1 1 -0.03020513 0.03969719
2 1 -0.02961226 0.03744658
3 1 -0.02901939 0.03524373
4 1 -0.02842652 0.03308866
5 1 -0.02783365 0.03098136
6 1 -0.02724077 0.02892183

age_poly <- model.matrix(~ poly(age, 2, raw=TRUE), data = lux)1
head(age_poly)2

 (Intercept) poly(age, 2, raw = TRUE)1 poly(age, 2, raw = TRUE)2
1 1 0 0
2 1 1 1
3 1 2 4
4 1 3 9
5 1 4 16
6 1 5 25

29 / 59

Monomials plotted (raw=TRUE)
age_poly <- model.matrix(~ poly(age, 2, raw=TRUE), data = lux)1

30 / 59

Orthogonal polynomials plotted (default)
age_poly <- model.matrix(~ poly(age, 4), data = lux)1

31 / 59

Why? Raw polynomials can be highly correlated
Reciprocal of the condition number is rcond.

We want it to be close to 1, so that the matrix can be inverted.

X <- model.matrix(~ poly(age, 10),1
 data = lux)2
rcond(t(X) %*% X)3

[1] 0.0002087683

X_raw <- model.matrix(~ poly(age, 10, raw=TRU1
 data = lux)2
rcond(t(X_raw) %*% X_raw)3

[1] 1.155411e-40

inv <- solve(t(X) %*% X)1 inv <- solve(t(X_raw) %*% X_raw)1

Error in solve.default(t(X_raw) %*% X_raw): system
is computationally singular: reciprocal condition
number = 1.15541e-40

32 / 59

Example: Polynomial regression

-10

-8

-6

-4

-2

0 25 50 75
age

lo
g_
m
x

Polynomial Regression Order 1

33 / 59

Can easily use polynomials in classification

(Right Side:) Model of binary event Wage > 250 via logistic regression

P(y >i 250∣x) =i

1 + exp(β + β x + β x + β x + β x)0 1 i 2 i
2

3 i
3

4 i
4

exp(β + β x + β x + β x + β x)0 1 i 2 i
2

3 i
3

4 i
4

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.1.

34 / 59

Polynomial regression: notes and problems
Pros:

Can model more complex relationships
Can also use this in logistic regression, or any linear-like regression for that
matter

Cons:

Normally stick to polynomials of degree 2-4; shape can get very erratic with
higher degrees
Can be computationally unstable with high degrees
Can be difficult to interpret
Non-local effects in the errors

35 / 59

Lecture Outline

Step Functions

Linearity & Nonlinearity
Data Science Starts With Data
Linear Regression

Polynomial Regression

Regression Splines

Smoothing Splines
Local Regression

Generalised Additive Models (GAMs)

35 / 59

Step functions
Polynomial regression imposes a global structure on the nonlinear function; an
alternative is to use step functions.

Break up range of into distinct regions

Do a least squares fit on

x k

c <0 c <1 ⋯ < c k

y =i β +0 β I(c ≤1 1 x ≤i c) +2 β I(c ≤2 2 x <i c) +3 ⋯ + β I(c ≤k−1 k−1 x ≤i c)k

36 / 59

Example: Step functions

-8

-6

-4

-2

0 25 50 75
age

lo
g_
m
x

Step Function Fitting with 2 Bins

37 / 59

Step function regression on Wage data

Same Wage example as before but with step functions.
Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.2.

38 / 59

Using I and cut
head(model.matrix(~ age + I(age >= 3), data = 1

 (Intercept) age I(age >= 3)TRUE
1 1 0 0
2 1 1 0
3 1 2 0
4 1 3 1
5 1 4 1
6 1 5 1

head(cut(lux$age, c(0, 5, 100), right=FALSE))1

[1] [0,5) [0,5) [0,5) [0,5) [0,5) [5,100)
Levels: [0,5) [5,100)

head(model.matrix(~ age + cut(age, c(0, 5, 100), right=F), data = lux))1

 (Intercept) age cut(age, c(0, 5, 100), right = F)[5,100)
1 1 0 0
2 1 1 0
3 1 2 0
4 1 3 0
5 1 4 0
6 1 5 1

model_step <- lm(log_mx ~ cut(age, c(0, 5, 100), right=F), data = lux)1
coef(model_step)2

 (Intercept)
 -6.555113
cut(age, c(0, 5, 100), right = F)[5,100)
 1.300758

39 / 59

More general viewpoint: Basis functions
Fit the model:

 are the basis functions
Transform the predictor before fitting it, and split it into multiple derived
“predictors”

For polynomial regression,
For step function regression, if

y =i β +0 β b (x) +1 1 i β b (x) +2 2 i ⋯ + β b (x)k k i

b (x), b (x), … , b (x)1 i 2 i k i

X =

⎣
⎡1

1

⋮
1

x 11

x 21

⋮
x n1

x 12

x 22

⋮
x n2

…
…

⋱
…

x 1p

x 2p

⋮
x np

⎦
⎤

X =

⎣
⎡1

1

⋮
1

b (x)1 1

b (x)1 2

⋮
b (x)1 n

b (x)2 1

b (x)2 2

⋮
b (x)2 n

…
…

⋱
…

b (x)k 1

b (x)k 2

⋮
b (x)k n

⎦
⎤

b (x) =j i x i
j

b (x) =j i I(c ≤j x <i c)j+1 j = 1, … , k − 1

40 / 59

Lecture Outline

Regression Splines

Linearity & Nonlinearity
Data Science Starts With Data
Linear Regression

Polynomial Regression
Step Functions

Smoothing Splines
Local Regression

Generalised Additive Models (GAMs)

40 / 59

Example: Piecewise cubic regression
Example: Fitting a piecewise cubic polynomial with one “knot”

 is a knot: a point of our choosing where the model changes from one to another

y =i {β + β x + β x + β x 0,1 1,1 i 2,1 i
2

3,1 i
3

β + β x + β x + β x 0,2 1,2 i 2,2 i
2

3,2 i
3

 if x < ci

 if x ≥ ci

c

41 / 59

Unconstrained cubic regression

Unconstrained cubic regression on Wage data

42 / 59

Spline definition
A piecewise polynomial function of degree is a spline if the function is
continuous up to the th derivative at each knot.

A st degree spline is a piecewise linear function which is continuous (i.e. the
th derivative)

A nd degree spline is a piecewise quadratic function which is continuous and
has a continuous derivative
A rd degree spline is a piecewise cubic function which is continuous and has
continuous st and nd derivatives

d

(d− 1)

1
0

2

3
1 2

43 / 59

Example: Linear spline

-7

-5

-3

0 25 50 75
age

lo
g_
m
x

Linear Spline with 2 Knots

model <- lm(log_mx ~ bs(age, degree=1, knots=...), data = lux_2020)1

43 / 59

Example: Cubic spline

-8

-6

-4

-2

0 25 50 75
age

lo
g_
m
x

Cubic Spline with 2 Knots

model <- lm(log_mx ~ bs(age, degree=3, knots=...), data = lux_2020)1

43 / 59

Examples: Different types of splines

Four varieties of splines fit on a subset of the Wage data
Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.3.

44 / 59

Cubic splines & natural splines
The cubic is preferred as it is the smallest order where the knots are not visible
without close inspection.

We can extend the idea of a cubic spline to a natural cubic spline. It is a spline
where outside the boundary knots (extrapolation) the function is linear.

Cubic spline & natural cubic spline fit to Wage subset Degree-15 spline & natural cubic spline fit to Wage data

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figures 7.4 and 7.7.

45 / 59

Lecture Outline

Smoothing Splines

Linearity & Nonlinearity
Data Science Starts With Data
Linear Regression

Polynomial Regression
Step Functions
Regression Splines

Local Regression

Generalised Additive Models (GAMs)

45 / 59

Smoothing splines
Find a function which minimises

Goal: fit a function which minimises the MSE whilst still being ‘smooth’
 is the tuning parameter which penalises a rougher fit

: will be very lumpy and will just interpolate all training data points
(more flexible: less bias for more variance)

: will be a straight line fit (less flexible: more bias for less variance)
 turns out to be a (shrunken) natural cubic spline, with knots at every

training data point.

For mortality smoothing, US uses smoothing splines, UK uses regression splines.

g

 (y −
n

1

i=1

∑
n

i g(x)) +i
2 λ g (x) dx∫

x=−∞

∞
′′ 2

λ

λ = 0 g

λ → ∞ g

g

Note

46 / 59

Example: Smoothing splines

-10

-8

-6

-4

-2

0 25 50 75
age

lo
g_
m
x

Smoothing Spline with df 2

model <- smooth.spline(lux_2020age, lux_2020log_mx, df = df)1

47 / 59

Choosing
: Effective degrees of freedom: measures the flexibility of the smoothing

spline.
Can be non-integer since some variables are constrained, so they are not
free to vary
Note that the location and degree of the knots is all determined.

Choice of via Cross validation.
LOOCV error can be computed using only one computation for each ;
extremely computationally efficient.

λ

df λ

λ

λ

48 / 59

Smoothing splines on Wage data

Comparing smoothing splines
Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.8.

49 / 59

Lecture Outline

Local Regression

Linearity & Nonlinearity
Data Science Starts With Data
Linear Regression

Polynomial Regression
Step Functions
Regression Splines

Smoothing Splines

Generalised Additive Models (GAMs)

49 / 59

Local regression
Algorithm

1. Get the fraction nearest neighbours to the point
2. Assign each a weight based on how close they are to .

Closer: higher weight. Furthest point in the should get weight zero. Points
outside the selected should have a zero weight as well

3. Minimise

4.

s = k/n x 0

K =i0 K(x ,x)i 0 x 0

k

k

 K (y −
i=1

∑
n

i0 i β −0 β x)1 i
2

 (x) =f̂ 0 +β̂0 x β̂1 0

50 / 59

Local regression example

Example of making predictions with local regression at and x ≈ 0.05 x ≈ 0.45

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.9.

51 / 59

Local regression cont.
Local regression does a weighted regression of the points about some
predictor value . Can obtain an estimate for the response value at from
this
Needs to be re-run each time an estimate at a different point is desired
Useful for adapting model to recent data
Possible to extend to 2 or 3 predictors: just have the weights based on distance
in 2D or 3D space.
Things start to get problematic if as there will be very few training
observations

x 0 x 0

p > 4

52 / 59

Local regression on Wage data

You can adjust the smoothness by changing the span
Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.10.

53 / 59

Lecture Outline

Generalised Additive Models (GAMs)

Linearity & Nonlinearity
Data Science Starts With Data
Linear Regression

Polynomial Regression
Step Functions
Regression Splines

Smoothing Splines
Local Regression

53 / 59

GAMs

Non-linearly fit multiple predictors on a response, whilst keeping the additive
quality

 can be virtually any function of the parameter, including the ones discussed
earlier
Find a separate for each predictor, and add them together
Can also be used on categorical responses in a logistic regression setting

y =i β +0 f (x) +1 i,1 f (x) +2 i,2 ... + f (x) +p i,p ε i

f i

f i

54 / 59

Example: GAM on Wage data

GAM fit using regression splines

Each plot shows the contribution of each predictor to wage
education is qualitative. The others are fit with natural cubic splines

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.11.

55 / 59

Example: GAM on Wage data

GAM fit using smoothing splines

Each plot shows the contribution of each predictor to wage
education is qualitative. The others are fit with smoothing splines

Source: James et al. (2021), An Introduction to Statistical Learning with Applications in R, Figure 7.12.

56 / 59

GAMs: pros and cons
GAMs allow us to consider nonlinear relationships between the predictors
and response, which can give a better fit
Model is additive: can still interpret the effect of a single given predictor on
the response
However, model additivity ignores interaction effects between predictors.
Could always add two-dimensional function parameters, e.g. f (x ,x)j,k j k

57 / 59

GAMs on Luxembourg data (mgcv)
model_gam <- gam(log_mx ~ s(age) + s(year), data=lux)1

plot(model_gam, select=1)1 plot(model_gam, select=2)1

58 / 59

GAMs on Luxembourg data (gam)
library(gam)1
lux_factor <- lux %>% mutate(year = factor(ye2
model_gam <- gam(log_mx ~ s(age) + year, data3
plot(model_gam)4

Source: xkcd

59 / 59

https://xkcd.com/2048/

Glossary
interpolation & extrapolation
polynomial regression

monomials
orthogonal polynomials

step functions
basis function expansion
piecewise polynomial functions

regression splines
knots
natural splines
cubic splines

smoothing splines
local regression
generalised additive models (GAMs)

59 / 59

Recommended viewing (splines)

It won’t help with your assessment, it’s just very entertaining/interesting.
The Continuity of Splines

59 / 59

https://www.youtube.com/watch?v=jvPPXbo87ds

Recommended viewing (LOESS)

What is LOESS and When Should I Use It?

59 / 59

https://www.youtube.com/watch?v=b7oryuMP3r8

R Package versions
print(sessionInfo(), locale=FALSE, tzone=FALSE)1

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version
3.12.0

attached base packages:
[1] splines stats graphics grDevices utils datasets methods
[8] base

other attached packages:
 [1] gam_1.22-3 foreach_1.5.2 glue_1.7.0 plotly_4.10.4
 [5] mgcv_1.9-1 nlme_3.1-165 lubridate_1.9.3 forcats_1.0.0
 [9] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 readr_2.1.5
[13] tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0

loaded via a namespace (and not attached):
 [1] utf8_1.2.4 generics_0.1.3 stringi_1.8.4 lattice_0.22-6
 [5] hms_1.1.3 digest_0.6.36 magrittr_2.0.3 evaluate_0.24.0

59 / 59

Python Package versions
from watermark import watermark1
print(watermark(python=True, packages="matplotlib,numpy,pandas,seaborn,scipy"))2

Python implementation: CPython
Python version : 3.11.9
IPython version : 8.26.0

matplotlib: 3.9.0
numpy : 1.26.4
pandas : 2.2.2
seaborn : 0.13.2
scipy : 1.11.0

59 / 59

