
Tree-Based Methods
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications

1 / 74

Overview
Decision trees

Stratify / segment the predictor space into a
number of simple regions
The set of splitting rules can be summarised
in a tree

Bagging, random forests, boosting

Ensemble methods

Produce multiple trees
Improve the prediction accuracy of tree-based
methods
Lose some interpretation

A tree (stock photo)

2 / 74

Lecture Outline

Decision Trees

Growing a Tree

National Flood Insurance Program Demo

Pruning a Tree

Bootstrap Aggregation

Random Forests

Boosting

2 / 74

How much is a train ticket?

Yes No

0 - 10 km 10 - 20 km 20 - 35 km 35 - 65 km 65+ km 0 - 10 km 10 - 20 km 20 - 35 km 35 - 65 km 65+ km

Is it peak hour?

Peak Hour Off-Peak Hour

Distance?

$3.79 $4.71 $5.42 $7.24 $9.31

Distance?

$2.65 $3.29 $3.79 $5.06 $6.51

3 / 74

In code
R Python

rail_cost <- function(peak_hours, distance) {1
 if (peak_hours) {2
 if (distance <= 10) {3
 cost <- 3.794
 } else if (distance <= 20) {5
 cost <- 4.716
 } else if (distance <= 35) {7
 cost <- 5.428
 } else if (distance <= 65) {9
 cost <- 7.2410
 } else {11
 cost <- 9.3112
 }13
 } else {14
 if (distance <= 10) {15
 cost <- 2.6516
 } else if (distance <= 20) {17
 cost <- 3.2918
 } else if (distance <= 35) {19
 cost <- 3.7920
 } else if (distance <= 65) {21
 cost <- 5.0622
 } else {23
 cost <- 6.5124
 }25
 }26
 return(cost)27
}28

4 / 74

...

Hitters dataset

AtBat
<int>

Hits
<int>

HmRun
<int>

Runs
<int>

RBI
<int>

-Andy Allanson 293 66 1 30 29

-Alan Ashby 315 81 7 24 38

-Alvin Davis 479 130 18 66 72

-Andre Dawson 496 141 20 65 78

-Andres Galarraga 321 87 10 39 42

-Alfredo Griffin 594 169 4 74 51

-Al Newman 185 37 1 23 8

-Argenis Salazar 298 73 0 24 24

-Andres Thomas 323 81 6 26 32

-Andre Thornton 401 92 17 49 66

1-10 of 322 rows | 1-6 of 21 columns

R Python

data(Hitters)1
Hitters2

Next1 2 3 4 5 6 33Previous

5 / 74

Fit a basic tree
R Python

(tree <- rpart(1
 log(Salary) ~ Years + Hits,2
 data = Hitters))3

n= 263

node), split, n, deviance, yval
 * denotes terminal node

 1) root 263 207.153700 5.927222
 2) Years< 4.5 90 42.353170 5.106790
 4) Years< 3.5 62 23.008670 4.891812
 8) Hits< 114 43 17.145680 4.727386 *
 9) Hits>=114 19 2.069451 5.263932 *
 5) Years>=3.5 28 10.134390 5.582812 *
 3) Years>=4.5 173 72.705310 6.354036
 6) Hits< 117.5 90 28.093710 5.998380
 12) Years< 6.5 26 7.237690 5.688925 *
 13) Years>=6.5 64 17.354710 6.124096
 26) Hits< 50.5 12 2.689439 5.730017 *
 27) Hits>=50.5 52 12.371640 6.215037 *
 7) Hits>=117.5 83 20.883070 6.739687 *

plot(tree)1
text(tree)2

Source: These plots are recreating ISLR2’s Figure 8.4.

6 / 74

Nicer plots for decision trees
R Python

rpart.plot(tree)1

Source: A recreation of ISLR2’s Figure 8.4.

7 / 74

After pruning that tree
pruned_tree <- prune(tree, cp = tree$cptable[3, "CP"])1
rpart.plot(pruned_tree)2

Source: A recreation of ISLR2’s Figure 8.1.

8 / 74

Tree Terminology
Internal nodes

Terminal nodes or
leaves
Branches

Root

rpart.plot(pruned_tree)1

9 / 74

Regions in the predictor space

Source: A recreation of ISLR2’s Figure 8.2.

10 / 74

Tree regions & predictions
A decision tree is made by:

1. Dividing the predictor space (i.e. the set of possible values for)
into distinct and non-overlapping regions, ,

2. Making the same prediction for every observation that falls into the region

the mean response for the training data in (regression trees)

the mode response for the training data in (classification trees)

Example:

Region Predicted salaries

X ,X , … ,X 1 2 p

J R ,R , … ,R 1 2 J

R j

Rj

R j

R =1 {X∣Years < 4.5} $1, 000 × e =5.107 $165, 174

R =2 {X∣Years ≥ 4.5, Hits < 117.5} $1, 000 × e =5.999 $402, 834

R =3 {X∣Years ≥ 4.5, Hits ≥ 117.5} $1, 000 × e =6.740 $845, 346

11 / 74

Discussion
How do you interpret
the results of this tree?
In particular, consider
the following
questions

Which factor is more
important in
determining Salary?
How does Hits affect
Salary?

rpart.plot(pruned_tree)1

12 / 74

Decision trees: summary
Decision trees are simple, popular, and
easy to interpret.

They are not the most accurate
method, but they can be great to
understand the data.

They do form the basis for more
accurate and complex methods like
random forests and boosting.

A decision tree in the wild.

Source: New York Times (2008), .Decision Tree: The Obama-Clinton Divide

13 / 74

https://archive.nytimes.com/www.nytimes.com/imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html

Non-binary train cost tree
A decision tree enforces binary splits…

Yes No

0 - 10 km 10 - 20 km 20 - 35 km 35 - 65 km 65+ km 0 - 10 km 10 - 20 km 20 - 35 km 35 - 65 km 65+ km

Peak hour?

Peak Hour Off-Peak Hour

Distance?

$3.79 $4.71 $5.42 $7.24 $9.31

Distance?

$2.65 $3.29 $3.79 $5.06 $6.51

14 / 74

Binary train cost tree
… but we can still represent non-binary splits in a binary tree.

Yes No

Peak hour?

Peak Hour Off-Peak Hour

0 - 10 km: $3.79 10 km +

10 - 20 km: $4.71 20 km +

20 - 35 km: $5.42 35 km +

35 - 65 km: $7.24 65 km +: $9.31

0 - 10 km: $2.65 10 km +

10 - 20 km: $3.29 20 km +

20 - 35 km: $3.79 35 km +

35 - 65 km: $5.06 65 km +: $6.5

15 / 74

Popular (IME 2023 abstracts)
16 / 74

Lecture Outline

Growing a Tree

Decision Trees

National Flood Insurance Program Demo

Pruning a Tree

Bootstrap Aggregation

Random Forests

Boosting

16 / 74

Fitting a regression tree
Divide the predictor space into high-dimensional rectangles, or boxes

The goal is to find boxes that minimise

where is the mean response for the training observations within the th
box
Computationally unfeasible to consider every possible partition

take a top-down, greedy approach…

R ,R , … ,R 1 2 J

RSS = (y −
j=1

∑
J

i∈R j

∑ i)ŷR j

2

 ŷR j
j

17 / 74

Synthetic regression dataset
18 / 74

Growing a regression tree I
18 / 74

Growing a regression tree II
18 / 74

Growing a regression tree III
18 / 74

Growing a regression tree IV
18 / 74

Recursive binary splitting
Start with the root node, and make new splits greedily one at a time

Scan through all of the inputs
for each splitting variable, the split point can be determined very quickly

The overall solution for this branch (i.e. selection of) follows.

Partition the data into the two resulting regions
Repeat the splitting process on each of the two regions

Continue the process until a stopping criterion is reached

s

j

19 / 74

Recursive binary splitting details
Consider a splitting variable and split point

Find the splitting variable and split point that solve

where the inner mins are solved by

j s

R (j, s) =1 {X∣X ≤j s} and R (j, s) =2 {X∣X >j s}

j s

 [(y −
j, s

min
c 1

min
x ∈R (j, s)i 1

∑ i c) +1
2

 (y −
c 2

min
x ∈R (j, s)i 2

∑ i c)]2
2

 =ĉ1 Ave(y ∣x ∈i i R (j, s)) and =1 ĉ2 Ave(y ∣x ∈i i R (j, s))2

20 / 74

2023 exam question
What would be the tree’s predicted value for at ?y x = 0

21 / 74

Classification trees
Very similar to a regression tree, except:

Predict that each observation belongs to the most commonly occurring class of
training observations in the region to which it belongs
RSS cannot be used as a criterion for making the binary splits, instead use a
measure of node purity:

Gini index, or entropy

where

G = (1 −
k=1

∑
K

p̂mk)p̂mk D = − ln()
k=1

∑
K

p̂mk p̂mk

 =p̂mk I(y =
∣R ∣m

1

x ∈R i m

∑ i k) .

22 / 74

Growing a classification tree I
23 / 74

Growing a classification tree II
23 / 74

Growing a classification tree III
23 / 74

Growing a classification tree IV
23 / 74

Multiple representations
rpart.plot(tree4, type = 0)1

rpart.plot(tree4, type = 2)1

rpart.plot(tree4, type = 3)1

rpart.plot(tree4, type = 5)1

24 / 74

Multiple representations II
rpart.plot(tree4, type = 1, extra = 2)1

rpart.plot(tree4, type = 1, extra = 4)1

rpart.plot(tree4, type = 1, extra = 3)1

rpart.plot(tree4, type = 1, extra = 5)1

24 / 74

Which one?
So, should you use Gini impurity or entropy? The truth is, most of the time
it does not make a big difference: they lead to similar trees. Gini impurity is
slightly faster to compute, so it is a good default. However, when they
differ, Gini impurity tends to isolate the most frequent class in its own
branch of the tree, while entropy tends to produce slightly more balanced
trees.

Footnote: See Sebastian Raschka’s for more details.interesting analysis

Source: Géron (2022), Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, 3rd Edition, O’Reilly Media, Chapter 6.

25 / 74

https://sebastianraschka.com/faq/docs/decision-tree-binary.html

Lecture Outline

National Flood Insurance Program Demo

Decision Trees

Growing a Tree

Pruning a Tree

Bootstrap Aggregation

Random Forests

Boosting

25 / 74

National Flood Insurance Program
Available at .

National Flood Insurance Program (NFIP,)

OpenFEMA dataset
claims <- read.csv("FimaNfipClaimsClean.csv")1

image source
See also Zhang and Xu (2023), Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning, Information Systems Research.

26 / 74

https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
https://www.theinsurer.com/news/nfip-to-roll-out-delayed-risk-rating-2-0-methodology-in-october/

The data dictionary
Name Title Type Description

id ID text Unique ID assigned to the record

amountPaidOnBuildingClaim Amount Paid on
Building Claim

decimal Dollar amount paid on the building claim. In
some instances, a negative amount may appear.

agricultureStructureIndicator Agriculture
Structure
Indicator

boolean Indicates whether a building is reported as being
an agricultural structure in the policy application.

policyCount Policy Count smallint Insured units in an active status. A policy contract
ceases to be in an active status as of the
cancellation date or the expiration date.

countyCode County Code text FIPS code uniquely identifying the primary
County (e.g., 011 represents Broward County)
associated with the project.

lossDate Date of Loss datetime Date on which water first entered the insured
building.

elevatedBuildingIndicator Elevated
Building
Indicator

boolean Indicates whether a building meets the NFIP
definition of an elevated building.

latitude Latitude decimal Approximate latitude of the insured building.

locationOfContents Location of
Contents

smallint Code that indicates the location of contents, (e.g.,
garage on property, in house).

26 / 74

Name Title Type Description

longitude Longitude decimal Approximate longitude of the insured building.

lowestFloorElevation Lowest Floor
Elevation

decimal A building’s lowest floor is the floor or level
that is used as the point of reference when
rating a building.

numberOfFloors Number of
Floors

smallint Code that indicates the number of floors in the
insured building.

occupancyType Occupancy Type smallint Code indicating the use and occupancy type of
the insured structure.

originalConstructionDate Original
Construction
Date

date The original date of the construction of the
building.

originalNBDate Original NB
Date

date The original date of the flood policy.

postFIRMConstructionIndicator Post-FIRM
Construction
Indicator

boolean Indicates whether construction was started
before or after publication of the FIRM.

rateMethod Rate Method text Indicates policy rating method.

state State text The two-character alpha abbreviation of the
state in which the insured property is located.

totalBuildingInsuranceCoverage Total Building
Insurance
Coverage

integer Total Insurance Amount in whole dollars on the
Building.

26 / 74

First decision tree
tree <- rpart(amountPaidOnBuildingClaim ~ ., data=claims[1:1000,])1
rpart.plot(tree)2

27 / 74

Remove ID column
claims <- claims %>% select(-id)1
tree <- rpart(amountPaidOnBuildingClaim ~ ., data=claims[1:1000,])2
rpart.plot(tree)3

28 / 74

Dates to years and months
claims$lossYear <- year(claims$lossDate) # And so on...1

tree <- rpart(amountPaidOnBuildingClaim ~ ., data=claims[1:1000,])1
rpart.plot(tree)2

29 / 74

Plot claims by year
30 / 74

Plot average claim size by year
31 / 74

Number of claims by state
32 / 74

Max claim size by state
33 / 74

Some states have very few claims
34 / 74

Geographical distribution of perils

Friedman Exhibit 1 (p. 10).
Source: Friedman, D. G. (1972), Insurance and the natural hazards. ASTIN Bulletin: The Journal of the IAA, 7(1), 4-58.

35 / 74

Hot spots

Friedman Exhibit 13 (p. 46).
Source: Friedman, D. G. (1972), Insurance and the natural hazards. ASTIN Bulletin: The Journal of the IAA, 7(1), 4-58.

36 / 74

Reduce the number of levels
table(claims$state)1

 AK AL AR AZ CA CO CT DC DE FL GA GU HI
 27 2019 410 139 1408 191 819 10 303 11833 1035 6 152
 IA ID IL IN KS KY LA MA MD ME MI MN MO
 504 43 1605 662 241 1012 20785 885 696 115 402 368 1752
 MS MT NC ND NE NH NJ NM NV NY OH OK OR
 2753 53 5023 513 189 142 8520 48 81 5899 790 490 237
 PA PR RI SC SD TN TX UN UT VA VI VT WA
 2363 569 238 2023 136 809 17759 10 11 2006 83 108 522
 WI WV WY
 313 874 16

length(unique(claims$state))1

[1] 55

States with fewer than 1% claims1
rare_flood_states <- names(which(table(claims[["state"]]) < nrow(claims) / 100))2
claims$state <- ifelse(claims$state %in% rare_flood_states, "Other", claims$state)3

4
table(claims$state)5

 AL CA FL GA IL KY LA MO MS NC NJ NY Other
 2019 1408 11833 1035 1605 1012 20785 1752 2753 5023 8520 5899 12205
 PA SC TX VA
 2363 2023 17759 2006

length(unique(claims$state))1

[1] 17

37 / 74

New tree
tree <- rpart(amountPaidOnBuildingClaim ~ ., data=claims[1:5000,])1
rpart.plot(tree)2

38 / 74

More data
tree <- rpart(amountPaidOnBuildingClaim ~ ., data=claims[1:50000,])1
rpart.plot(tree)2

39 / 74

Lecture Outline

Pruning a Tree

Decision Trees

Growing a Tree

National Flood Insurance Program Demo

Bootstrap Aggregation

Random Forests

Boosting

39 / 74

What’s the best size of tree
The smallest tree is just a root node (no
splits).

The upper limit is to grow until one
observation in each region.

How large should we grow the tree?

What’s wrong if the tree is too small?
What’s wrong if the tree is too large?

Pruning (stock photo)

40 / 74

A large tree for the flood insurance data
large_tree <- rpart(amountPaidOnBuildingClaim ~ ., data=train_set, control=rpart.control(cp=0.00001))1
rpart.plot(large_tree)2

41 / 74

The full tree for train pricing
41 / 74

Early stopping of training
“In order to reduce the size of the tree and hence to prevent overfitting,
these stopping criteria that are inherent to the recursive partitioning
procedure are complemented with several rules. Three stopping rules that
are commonly used can be formulated as follows:

A node is declared terminal when it contains less than a fixed number
of observations.

A node is declared terminal if at least one of its children nodes and
that results from the optimal split contains less than a fixed number of
observations.
A node is declared terminal when its depth is equal to a fixed maximal
depth.”

t

t t L t R

s t

t

Source: Denuit et al. (2020), Effective Statistical Learning Methods for Actuaries II: Tree-Based Methods and Extensions, Springer, p. 58.

42 / 74

Pruning motivation

A decision rule of considering the decrease in RSS at each step/split (versus a
threshold) is too short-sighted.

Alternate approach of growing a large tree then pruning back to obtain a
subtree is a better strategy.

Cross validation of each possible subtree is however very cumbersome.
An alternative approach is cost complexity pruning (also known as weakest
link pruning)

“While the stopping rules presented above may give good results in
practice, the strategy of stopping early the growing of the tree is in general
unsatisfactory… That is why it is preferable to prune the tree instead of
stopping the growing of the tree. Pruning a tree consists in fully developing
the tree and then prune it upward until the optimal tree is found.”

Source: Denuit et al. (2020), Effective Statistical Learning Methods for Actuaries II: Tree-Based Methods and Extensions, Springer, p. 59.

43 / 74

Cost-Complexity Pruning
Define a subtree to be any tree than can be obtained by pruning (a
fully-grown tree)

Terminal node represents region

: number of terminal nodes in

Define the cost complexity criterion

where is the mean in the th leaf and controls the tradeoff between tree
size and goodness of fit.

T ⊂ T 0 T 0

m R m

∣T ∣ T

Total cost = Measure of Fit + Measure of Complexity

C (T) =α (y −
m=1

∑
∣T ∣

i∈R m

∑ i) +ŷm
2 α∣T ∣

 ŷm y i m α

44 / 74

Cost-Complexity Pruning
For each , we want to find the subtree that minimises

How to find ?

“weakest link pruning”

For a particular , find the subtree such that the cost complexity
criterion is minimised

How to choose ?

cross-validation

α T ⊆α T 0 C (T)α

T α

α T α

α

45 / 74

Tree Algorithm Summary
1. Use recursive binary splitting to grow a large tree on the training data

stop only when each terminal node has fewer than some minimum
number of observations

2. Apply cost complexity pruning to the large tree to obtain a sequence of best
subtrees, as a function of

there is a unique smallest subtree that minimises

3. Use -fold cross-validation to choose

4. Return the subtree from Step 2 that corresponds to the chosen value of

α

T α C (T)α

K α

α

46 / 74

Unpruned Hitters tree

The unpruned tree that results from top-down greedy splitting on the training data.
Source: James et al. (2021), An Introduction to Statistical Learning, Figure 8.4.

47 / 74

CV to pick (equiv.,)

The training, cross-validation, and test MSE are shown as a function of the number of terminal nodes in the pruned
tree. Standard error bands are displayed. The minimum cross-validation error occurs at a tree of size three.

α ∣T ∣

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 8.5.

48 / 74

CV to prune NFIP tree
49 / 74

The pruned tree
pruned_tree <- prune(large_tree, cp=optimal_cp)1
rpart.plot(pruned_tree)2

50 / 74

Linear model
linear <- lm(amountPaidOnBuildingClaim ~ ., data=train_set)1
summary(linear)2

Call:
lm(formula = amountPaidOnBuildingClaim ~ ., data = train_set)

Residuals:
 Min 1Q Median 3Q Max
-785390 -27448 -10894 11246 4787232

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.793e+06 6.662e+04 -41.928 < 2e-16 ***
agricultureStructureIndicator 1.662e+04 1.669e+04 0.996 0.319163
policyCount 1.463e+03 1.179e+02 12.407 < 2e-16 ***
countyCode 6.958e-02 3.986e-02 1.746 0.080900 .
elevatedBuildingIndicator -1.387e+04 6.202e+02 -22.358 < 2e-16 ***
latitude 3.955e+02 1.031e+02 3.835 0.000125 ***
locationOfContents 4.392e+02 1.412e+02 3.111 0.001864 **
longitude -1.455e+02 3.953e+01 -3.681 0.000232 ***
lowestFloorElevation -4.797e-02 5.281e-01 -0.091 0.927623
occupancyType 3.937e+03 1.681e+02 23.413 < 2e-16 ***
postFIRMConstructionIndicator 3.291e+03 7.311e+02 4.501 6.78e-06 ***
stateCA -8.250e+03 2.975e+03 -2.773 0.005548 **

51 / 74

Comparing models
Method RMSE

Linear Model 5.4792406^{4}

Large Tree 4.8683476^{4}

Pruned Tree 4.7371652^{4}

52 / 74

Lecture Outline

Bootstrap Aggregation

Decision Trees

Growing a Tree

National Flood Insurance Program Demo

Pruning a Tree

Random Forests

Boosting

52 / 74

Advantages and disadvantages of trees
Advantages

Easy to explain

(Mirror human decision making)
Graphical display

Easily handle qualitative predictors

Disadvantages

Low predictive accuracy compared to
other regression and classification
approaches

Can be very non-robust

Is there a way to improve the predictive performance of trees?

Pruning a decision tree
Ensemble methods

Bagging, random forest, boosting

53 / 74

An ensemble is a group of models…

Training various different classifiers on the same dataset.

Source: Geron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd ed., Figure 7-1.

54 / 74

… & you combine their predictions

Make an overall prediction based on the majority vote of the models.
Source: Geron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd ed., Figure 7-2.

55 / 74

Bootstrapping

Train on different versions of the same data.
Source: Geron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd ed., Figure 7-4.

56 / 74

Bootstrap resampling I
Original dataset

x1
<dbl>

x2
<dbl>

1.032286 6.7859712

1.084090 7.6180446

1.616814 5.2788242

1.793994 2.4958501

1.851577 8.4238348

1.900143 10.1700020

2.044791 1.9265906

2.317750 1.7829508

2.501149 2.0640931

2.571976 2.0820747

1-10 of …

A bootstrap resample

x1
<dbl>

x2
<dbl>

1.032286 6.7859712

1.032286 6.7859712

1.032286 6.7859712

1.032286 6.7859712

1.084090 7.6180446

1.793994 2.4958501

1.793994 2.4958501

1.793994 2.4958501

1.851577 8.4238348

1.900143 10.1700020

1-10 of …

There are 54% of the rows in the original dataset in the bootstrap resample.

Sort by first column to make1
it easier to see the resampling2
(so not necessary in general).3
df %>% arrange(x1)4

Next1 2 3 4 5Previous

set.seed(1)1
df %>% 2
 sample_n(size=nrow(df), replace=TRUE) %>%3
 arrange(x1)4

Next1 2 3 4 5Previous

57 / 74

Bootstrap resampling II
Original dataset

x1
<dbl>

x2
<dbl>

1.032286 6.7859712

1.084090 7.6180446

1.616814 5.2788242

1.793994 2.4958501

1.851577 8.4238348

1.900143 10.1700020

2.044791 1.9265906

2.317750 1.7829508

2.501149 2.0640931

2.571976 2.0820747

1-10 of …

A bootstrap resample

x1
<dbl>

x2
<dbl>

1.032286 6.7859712

1.616814 5.2788242

1.616814 5.2788242

1.616814 5.2788242

1.851577 8.4238348

1.900143 10.1700020

2.044791 1.9265906

2.317750 1.7829508

2.317750 1.7829508

2.571976 2.0820747

1-10 of …

There are 68% of the rows in the original dataset in the bootstrap resample.

Sort by first column to make1
it easier to see the resampling2
(so not necessary in general).3
df %>% arrange(x1)4

Next1 2 3 4 5Previous

set.seed(4)1
df %>% 2
 sample_n(size=nrow(df), replace=TRUE) %>%3
 arrange(x1)4

Next1 2 3 4 5Previous

57 / 74

Bootstrap Aggregation (Bagging)
A general-purpose procedure to reduce variance

particularly useful and frequently used in the context of decision trees

Bagging procedure:

1. Bootstrap

sample with replacement repeatedly
generate different bootstrapped training data sets

2. Train

train on the th bootstrapped training set to get

3. Aggregate (Regression: average, Classification: majority vote)

B

b (x)f̂ ∗b

 (x) =f̂bag (x)
B

1

b=1

∑
B

f̂ ∗b

58 / 74

Bagging: Illustration
59 / 74

Bagging: Illustration
60 / 74

Samples that are in the bag
Let’s say element of the matrix is 1 if the th observation is in the th
bootstrap sample and 0 otherwise; i.e. it is “in the bag”.

Boot_1
<dbl>

Boot_2
<dbl>

Boot_3
<dbl>

Boot_4
<dbl>

Boot_5
<dbl>

1 0 1 0 0

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 1 1 0 0

0 1 1 1 1

1 1 0 1 1

0 0 0 1 1

1 1 1 1 1

0 1 1 1 1

1-10 of 10 rows

i, j i j

61 / 74

Samples that are out of bag
Now consider the inverse, element of the matrix is 1 if the th observation is
not in the th bootstrap sample, it is “out of the bag”.

Boot_1
<dbl>

Boot_2
<dbl>

Boot_3
<dbl>

Boot_4
<dbl>

Boot_5
<dbl>

0 1 0 1 1

0 1 0 1 1

0 1 0 1 0

0 1 0 0 1

0 0 0 1 1

1 0 0 0 0

0 0 1 0 0

1 1 1 0 0

0 0 0 0 0

1 0 0 0 0

1-10 of 10 rows

#OOB
<dbl>

3

3

2

2

2

1

1

3

0

1

1-10 of 10 rows

Can perform “out of bag evaluation” by using the out of bag samples as a test
set. This is cheaper than cross-validation.

i, j i

j

62 / 74

Out-of-bag error estimation
There is a very straightforward way to estimate the test error of a bagged model

On average, each bagged tree makes use of around two-thirds of the
observations
The remaining one-third of the observations are referred to as the out-of-bag
(OOB) observations
Predict the response for the th observation using each of the trees in which
that observation was OOB

 predictions for the th observation

Take the average or a majority vote to obtain a single OOB prediction for the
th observation
Turns out this is very similar to the LOOCV error.

i

∼ B/3 i

i

63 / 74

Bagging: variable selection
Bagging can lead to difficult-to-interpret results, since, on average, no
predictor is excluded

Variable importance measures can be used
Bagging regression trees: RSS reduction for each split

Bagging classification trees: Gini index reduction for each split

Pick the ones with the highest variable importance measure

64 / 74

Lecture Outline

Random Forests

Decision Trees

Growing a Tree

National Flood Insurance Program Demo

Pruning a Tree

Bootstrap Aggregation

Boosting

64 / 74

Random Forests
Random forests decorrelates the bagged trees

At each split of the tree, a fresh random
sample of predictors is chosen as split
candidates from the full set of predictors

Strong predictors are used in (far) fewer
models, so the effect of other predictors can
be properly measured.

Reduces the variance of the resulting trees

Typically choose

Bagging is a special case of a random forest
with

m

p

m ≈ p

m = p

Random forests (stock photo)

65 / 74

Fitting with randomForest

Method RMSE

Linear Model 5.4792406^{4}

Large Tree 4.8683476^{4}

Pruned Tree 4.7371652^{4}

Random Forest 4.2828885^{4}

rf_model <- randomForest(amountPaidOnBuildingClaim ~ ., data = train_set,1
 ntree=50, importance = TRUE)2

66 / 74

Variable importance
importance(rf_model)1

 %IncMSE IncNodePurity
agricultureStructureIndicator -0.4092969 7.736630e+10
policyCount -0.6649637 1.312233e+13
countyCode 7.0676498 1.261540e+13
elevatedBuildingIndicator 1.9163476 4.066224e+12
latitude 12.7351805 1.257793e+13
locationOfContents 1.2897842 5.107086e+12
longitude 15.2725053 1.588849e+13
lowestFloorElevation 0.5264056 8.837304e+12
occupancyType -0.8955214 5.325440e+12
postFIRMConstructionIndicator 12.1436127 1.855385e+12
state 10.2933401 1.275269e+13
totalBuildingInsuranceCoverage 8.0324394 4.040641e+13
numberOfFloors 11.7156439 3.504747e+12
lossYear 8.2085826 2.277261e+13
lossMonth 17.4917355 1.009505e+13
originalConstructionYear 9.4747850 1.235049e+13
originalConstructionMonth 2.8065239 6.062158e+12
originalNBYear 6.7318799 1.468756e+13
originalNBMonth 1.5024842 1.277571e+13

67 / 74

Variable importance plot
varImpPlot(rf_model)1

68 / 74

Lecture Outline

Boosting

Decision Trees

Growing a Tree

National Flood Insurance Program Demo

Pruning a Tree

Bootstrap Aggregation

Random Forests

68 / 74

Boosting
A general approach that can be applied to many statistical learning methods
for regression or classification

We focus on boosting for regression trees
Involves combining a large number of decision trees

trees are grown sequentially

using the information from previously grown trees
no bootstrap - instead each tree is fitted on a modified version of the
original data (sequentially)

Unlike standard trees, boosting learns slowly - by focusing on the residuals
and hence focusing on areas the previous tree did not perform well.

69 / 74

Boosting Algorithm for Regression Trees
1. Set and for all in the training set

2. For , repeat:

a. Fit a tree with splits (terminal nodes) to the training data

b. Update by adding in a shrunken version of the new tree

c. Update the residuals

3. Output the boosted model

 (x) =f̂ 0 r =i y i i

b = 1, 2, ⋯ ,B

 f̂ b d d + 1 (X, r)

f̂

 (x) ←f̂ (x) +f̂ λ (x)f̂ b

r ←i r −i λ (x)f̂ b
i

 (x) =f̂ λ (x)
b=1

∑
B

f̂ b

70 / 74

Boosting Tuning Parameters
The number of trees

overfit if is too large

use cross-validation to select

The shrinkage parameter

a small positive number

controls the rate at which boosting learns
typical values are 0.01 or 0.001

The number of splits in each tree

 often works well, each tree is a stump

B

B

B

λ

d

d = 1

71 / 74

Fitting with gbm
Fit a gradient boosting model1
gbm_model <- gbm(amountPaidOnBuildingClaim ~ ., data = train_set,2
 distribution = "gaussian", n.trees = 5000,3
 interaction.depth = 2, shrinkage = 0.01, cv.folds = 5)4
best_iter <- gbm.perf(gbm_model, method = "cv")5

predictions <- predict(gbm_model, newdata = val_set, n.trees = best_iter)1

72 / 74

Comparing models
Method RMSE

Linear Model 5.4792406^{4}

Gradient Boosting 4.9819999^{4}

Large Tree 4.8683476^{4}

Pruned Tree 4.7371652^{4}

Random Forest 4.2828885^{4}

Finally, evaluating the winning model on the test set:

Test set error for the winning model is 965.1979057.

if (val_rmse_gbm < val_rmse_rf) {1
 predictions <- predict(gbm_model, newdata = test_set, n.trees = best_iter)2
 test_rmse <- sqrt(mean(predictions - test_set$amountPaidOnBuildingClaim)^2)3
} else {4
 predictions <- predict(rf_model, newdata = test_set)5
 test_rmse <- sqrt(mean(predictions - test_set$amountPaidOnBuildingClaim)^2)6
}7
test_rmse8

[1] 965.1979

73 / 74

Boosting (iteration 1)

Here, is the learning rate.λ = 2
1

74 / 74

Boosting (iteration 2)

Here, is the learning rate.λ = 2
1

74 / 74

Boosting (iteration 3)

Here, is the learning rate.λ = 2
1

74 / 74

Boosting (iteration 4)

Here, is the learning rate.λ = 2
1

74 / 74

Boosting (iteration 5)

Here, is the learning rate.λ = 2
1

74 / 74

Sensitivity to training data orientation

An example of a dataset which is rotated and fit to decision trees.

Source: Aurélien Geron (2022), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition, Figure 6-7

74 / 74

