Lab 10: Principal Component Analysis

ACTL3142 and ACTL5110

These questions were sourced from the excellent textbook Géron (2022), which is available
through the UNSW Library’s access to O’Reilly Media texts. The author provided a Google
Colab notebook containing the coding solutions.

Questions

Conceptual Questions

1.

(HandsOnML3, 38.1) x What are the main motivations for reducing a dataset’s dimen-
sionality? What are the main drawbacks?

. (HandsOnML3, Q8.3) x Once a dataset’s dimensionality has been reduced, is it possible

to reverse the operation? If so, how? If not, why?

. (HandsOnML3, Q8.4) » Can PCA be used to reduce the dimensionality of a highly

nonlinear dataset?

. (HandsOnML3, Q8.5) x Suppose you perform PCA on a 1,000-dimensional dataset, setting

the explained variance ratio to 95%. How many dimensions will the resulting dataset
have?

. (HandsOnML3, Q8.7) » How can you evaluate the performance of a dimensionality

reduction algorithm on your dataset?

Applied Question

1.

* Load the MNIST dataset (uploaded as two CSV files to Moodle) keeping the given
smaller training set (only 10,000 of the 60,000 training instances) and test set (another
10,000 instances). Train a random forest classifier on the dataset and time how long it
takes, then evaluate the resulting model on the test set. Next, use PCA to reduce the
dataset’s dimensionality, with an explained variance ratio of 95%. Train a new random
forest classifier on the reduced dataset and see how long it takes. Was training much


https://colab.research.google.com/github/ageron/handson-ml3/blob/main/08_dimensionality_reduction.ipynb
https://colab.research.google.com/github/ageron/handson-ml3/blob/main/08_dimensionality_reduction.ipynb

faster? Next, evaluate the classifier on the test set. How does it compare to the previous
classifier? Try again with a SGDClassifier (if using Python) or a kNN (if using R). How
much does PCA help now?

Solutions

Conceptual Questions

1. The main motivations for dimensionality reduction are:

o To speed up a subsequent training algorithm (in some cases it may even remove
noise and redundant features, making the training algorithm perform better)

e To visualize the data and gain insights on the most important features

o To save space (compression)

The main drawbacks are:

e Some information is lost, possibly degrading the performance of subsequent training
algorithms.

It can be computationally intensive.

o It adds some complexity to your Machine Learning pipelines.

o Transformed features are often hard to interpret.

2. Once a dataset’s dimensionality has been reduced using one of the algorithms we discussed,
it is almost always impossible to perfectly reverse the operation, because some information
gets lost during dimensionality reduction. Moreover, while some algorithms (such as
PCA) have a simple reverse transformation procedure that can reconstruct a dataset
relatively similar to the original, other algorithms (such as t-SNE) do not.

3. PCA can be used to significantly reduce the dimensionality of most datasets, even if they
are highly nonlinear, because it can at least get rid of useless dimensions. However, if there
are no useless dimensions—as in the Swiss roll dataset—then reducing dimensionality
with PCA will lose too much information. You want to unroll the Swiss roll, not squash
it.

4. That’s a trick question: it depends on the dataset. Let’s look at two extreme examples.
First, suppose the dataset is composed of points that are almost perfectly aligned. In
this case, PCA can reduce the dataset down to just one dimension while still preserving
95% of the variance. Now imagine that the dataset is composed of perfectly random
points, scattered all around the 1,000 dimensions. In this case roughly 950 dimensions
are required to preserve 95% of the variance. So the answer is, it depends on the dataset,
and it could be any number between 1 and 950. Plotting the explained variance as a
function of the number of dimensions is one way to get a rough idea of the dataset’s
intrinsic dimensionality.



5. Intuitively, a dimensionality reduction algorithm performs well if it eliminates a lot
of dimensions from the dataset without losing too much information. One way to
measure this is to apply the reverse transformation and measure the reconstruction error.
However, not all dimensionality reduction algorithms provide a reverse transformation.
Alternatively, if you are using dimensionality reduction as a preprocessing step before
another Machine Learning algorithm (e.g., a Random Forest classifier), then you can
simply measure the performance of that second algorithm; if dimensionality reduction
did not lose too much information, then the algorithm should perform just as well as
when using the original dataset.

Applied Question

The solutions for Python & R are below. The Python solution (shown first) is taken from the
textbook, and it was converted/adapted to the R solution (shown second).

Python

Exercise: Load the MNIST dataset

import pandas as pd

mnist_train = pd.read_csv("mnist_small_train.csv")
X_train = mnist_train.drop("label", axis=1)
y_train = mnist_train["label"]

mnist_test = pd.read_csv("mnist_test.csv")
X_test = mnist_test.drop("label", axis=1)
y_test = mnist_test["label"]

Exercise: Train a Random Forest classifier on the dataset and time how long it takes, then
evaluate the resulting model on the test set.

from sklearn.ensemble import RandomForestClassifier
from timeit import default_timer as timer

rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)
start = timer()

rnd_clf.fit(X_train, y_train);
print(timer() - start)



3.215074209000022

from sklearn.metrics import accuracy_score

y_pred = rnd_clf.predict(X_test)
accuracy_score(y_test, y_pred)

0.9505

Exercise: Next, use PCA to reduce the dataset’s dimensionality, with an explained variance
ratio of 95%.

from sklearn.decomposition import PCA

pca = PCA(n_components=0.95)
X_train_reduced = pca.fit_transform(X_train)

Exercise: Train a new Random Forest classifier on the reduced dataset and see how long it
takes. Was training much faster?

rnd_clf_with_pca = RandomForestClassifier(n_estimators=100, random_state=42)

start = timer()
rnd_clf_with_pca.fit(X_train_reduced, y_train);
print(timer() - start)

8.52665279100006

Oh no! Training is actually about twice slower now! How can that be? Well, as we saw in this
chapter, dimensionality reduction does not always lead to faster training time: it depends on
the dataset, the model and the training algorithm. See Figure 8-6. If you try SGDClassifier
instead of RandomForestClassifier, you will find that training time is reduced by a factor of 5
when using PCA. Actually, we will do this in a second, but first let’s check the precision of the
new random forest classifier.

Exercise: Next evaluate the classifier on the test set: how does it compare to the previous
classifier?

X_test_reduced = pca.transform(X_test)

y_pred = rnd_clf_with_pca.predict(X_test_reduced)
accuracy_score(y_test, y_pred)



0.9129

Exercise: Try again with an SGDClassifier. How much does PCA help now?

from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(random_state=42)

start = timer()
sgd_clf.fit(X_train, y_train);
print(timer() - start)

4.131636959000161

y_pred = sgd_clf.predict(X_test)
accuracy_score(y_test, y_pred)

0.8919

Okay, so the SGDClassifier takes much longer to train on this dataset than the RandomForest-
Classifier, plus it performs worse on the test set. But that’s not what we are interested in right
now, we want to see how much PCA can help SGDClassifier. Let’s train it using the reduced
dataset:

sgd_clf_with_pca = SGDClassifier(random_state=42)
start = timer()
sgd_clf_with_pca.fit(X_train_reduced, y_train);
print(timer() - start)

0.8716932079998969

Nice! Reducing dimensionality led to roughly 5x speedup. :) Let’s check the model’s
accuracy:

y_pred = sgd_clf_with_pca.predict(X_test_reduced)

accuracy_score(y_test, y_pred)

0.8965

Great! PCA not only gave us a roughly 5x speed boost, it also improved performance slightly.

So there you have it: PCA can give you a formidable speedup, and if you’re lucky a performance
boost... but it’s really not guaranteed: it depends on the model and the dataset!



R

library(randomForest)
library(rbenchmark)
library(caret)
library(kknn)

Exercise: Load the MNIST dataset

mnist_train <- read.csv("mnist_small_train.csv")
X _train <- mnist_train[, -1]
y_train <- as.factor(mnist_train[, "label"])

mnist_test <- read.csv("mnist_test.csv")
X_test <- mnist_test[, -1]
y_test <- as.factor(mnist_test[, "label"])

# Some of the columns have zero variance, so we remove them
nonzero_var_cols <- which(apply(X_train, 2, var) != 0)
X_train <- X_train[, nonzero_var_cols]

X_test <- X_test[, nonzero_var_cols]

Exercise: Train a Random Forest classifier on the dataset and time how long it takes, then
evaluate the resulting model on the test set.

benchmark (
rnd_clf <- randomForest(X_train, y_train,
ntree=20, seed=42, maxnodes=100),
replications=1)

test replicationkmpsedelativeuser.selys.self user.chilelys.child

rnd_ clf <- randomForest(X__train, 1 5.006 1 4.897 0.031 0 0
y__train, ntree = 20, seed = 42,
maxnodes = 100)

y_pred <- predict(rnd_clf, X_test)
accuracy_score <- sum(y_pred == y_test) / length(y_test)
accuracy_score

[1] 0.8879

Exercise: Next, use PCA to reduce the dataset’s dimensionality, with an explained variance
ratio of 95%.



pca <- preProcess(X_train, method=c("pca"), thresh=0.95)
X_train_reduced <- predict(pca, X_train)

X_test_reduced <- predict(pca, X_test)

ncol (X_train_reduced)

[1] 284

Exercise: Train a new Random Forest classifier on the reduced dataset and see how long it
takes. Was training much faster?

benchmark (
rnd_clf_with_pca <- randomForest(X_train_reduced, y_train,
ntree=20, seed=42, maxnodes=100),
replications=1

)
test replicatietspsedelativaiser.sel§ys.selfuser.chibys.child
rnd_ clf with_ pca <- 1 2126 1 2112 0.007 0 0

randomForest(X__train_ reduced, y_ train,
ntree = 20, seed = 42, maxnodes = 100)

Oh no! Training time is actuaty-abeut-twice-slowernow! not hugely different. How can that

be? Well, as we saw in this chapter, dimensionality reduction does not always lead to faster
training time: it depends on the dataset, the model and the training algorithm. See Figure
8-6. If you try KNN instead of RandomForest, you will find that training time is reduced by
a factor of 2 when using PCA. Actually, we will do this in a second, but first let’s check the
precision of the new random forest classifier.

Exercise: Next evaluate the classifier on the test set: how does it compare to the previous
classifier?

y_pred <- predict(rnd_clf_with_pca, X_test_reduced)
accuracy_score <- sum(y_pred == y_test) / length(y_test)
accuracy_score

[1] 0.7971

It is common for performance to drop slightly when reducing dimensionality, because we do lose
some potentially useful signal in the process. However, the performance drop is rather severe
in this case. So PCA really did not help: it slowed down training and reduced performance.

Exercise: Try again with an KNNClassifier. How much does PCA help now?



# The train.kknn function takes a formula as input
df _train <- data.frame(y = y_train, X_train) [1:5000,]

# Fit the model

benchmark (
knn_model <- train.kknn(y ~ ., data = df_train, ks=1:4),
replications=1
)
test replicationslapsedrelative user.self sys.self user.childsys.child
knn_model <- train.kknn(y ~ ., 1 10.546 1 10.485 0.037 0 0

data = df_train, ks = 1:4)

# You can then predict with this model using the test data like so:
df _test <- data.frame(X_test)

predictions <- predict(knn_model, newdata = df_test)

accuracy_score <- sum(predictions == y_test) / length(y_test)
accuracy_score

[1] 0.8952

Okay, so the KNNClassifier takes much longer to train on this dataset than the RandomForest-
Classifier, plus it performs worse on the test set. But that’s not what we are interested in right
now, we want to see how much PCA can help KNNClassifier.

Exercise: Let’s train it using the reduced dataset:

df_train <- data.frame(y = y_train, X_train_reduced) [1:5000,]

benchmark (
knn_model <- train.kknn(y ~ ., data = df_train, ks=1:4),
replications=1
)
test replicationslapsedrelative user.self sys.self user.childsys.child
knn model <- train.kknn(y ~ ., 1 5.534 1 5493 0.022 0 0

data = df train, ks = 1:4)

df test <- data.frame(X_test_reduced)

predictions <- predict(knn_model, newdata = df_test)
accuracy_score <- sum(predictions == y_test) / length(y_test)
accuracy_score



[1] 0.7935

Great! PCA gave us speed boost, and performance was similar.

So there you have it: PCA can give you a formidable speedup, and if you’re lucky a performance
boost... but it’s really not guaranteed: it depends on the model and the dataset!
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