
Lab 9: Clustering & PCA
ACTL3142 and ACTL5110

Questions about PCA were sourced from the excellent textbook Géron (2022), which is available
through the UNSW Library’s access to O’Reilly Media texts. The author also provided a
Google Colab notebook containing the coding solutions.

Questions

Conceptual Questions

1. ⋆ Solution (ISLR2, Q9.2) Suppose that we have four observations, for which we compute
a dissimilarity matrix, given by 

0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45


For instance, the dissimilarity between the first and second observations is 0.3, and the
dissimilarity between the second and fourth observations is 0.8.

a. On the basis of this dissimilarity matrix, sketch the dendrogram that results from
hierarchically clustering these four observations using complete linkage. Be sure to
indicate on the plot the height at which each fusion occurs, as well as the observations
corresponding to each leaf in the dendrogram.

b. Repeat (a), this time using single linkage clustering.

c. Suppose that we cut the dendrogram obtained in (a) such that two clusters result.
Which observations are in each cluster?

d. Suppose that we cut the dendrogram obtained in (b) such that two clusters result.
Which observations are in each cluster?
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https://colab.research.google.com/github/ageron/handson-ml3/blob/main/08_dimensionality_reduction.ipynb


e. It is mentioned in the chapter that at each fusion in the dendrogram, the position
of the two clusters being fused can be swapped without changing the meaning of
the dendrogram. Draw a dendrogram that is equivalent to the dendrogram in (a),
for which two or more of the leaves are repositioned, but for which the meaning of
the dendrogram is the same.

2. ⋆ Solution (ISLR2, Q9.3) In this problem, you will perform K-means clustering manually,
with K = 2, on a small example with n = 6 observations and p = 2 features. The
observations are as follows.

Obs X1 X2

1 1 4
2 1 3
3 0 4
4 5 1
5 6 2
6 4 0

a. Plot the observations.

b. Randomly assign a cluster label to each observation. You can use the sample()
command in R to do this. Report the cluster labels for each observation.

c. Compute the centroid for each cluster.

d. Assign each observation to the centroid to which it is closest, in terms of Euclidean
distance. Report the cluster labels for each observation.

e. Repeat (c) and (d) until the answers obtained stop changing.

f. In your plot from (a), color the observations according to the cluster labels obtained.

3. ⋆ Solution (HandsOnML3, Q8.1) What are the main motivations for reducing a dataset’s
dimensionality? What are the main drawbacks?

4. ⋆ Solution (HandsOnML3, Q8.3) Once a dataset’s dimensionality has been reduced, is it
possible to reverse the operation? If so, how? If not, why?

5. Solution (HandsOnML3, Q8.4) Can PCA be used to reduce the dimensionality of a highly
nonlinear dataset?

6. ⋆ Solution (HandsOnML3, Q8.5) Suppose you perform PCA on a 1,000-dimensional
dataset, setting the explained variance ratio to 95%. How many dimensions will the
resulting dataset have?

7. Solution (HandsOnML3, Q8.7) How can you evaluate the performance of a dimensionality
reduction algorithm on your dataset?
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Applied Questions

1. ⋆ Solution (ISLR2, Q9.9) Consider the USArrests data. We will now perform hierarchical
clustering on the states.

a. Using hierarchical clustering with complete linkage and Euclidean distance, cluster
the states.

b. Cut the dendrogram at a height that results in three distinct clusters. Which states
belong to which clusters?

c. Hierarchically cluster the states using complete linkage and Euclidean distance, after
scaling the variables to have standard deviation one.

d. What effect does scaling the variables have on the hierarchical clustering obtained? In
your opinion, should the variables be scaled before the inter-observation dissimilarities
are computed? Provide a justification for your answer.

2. Solution (ISLR2, Q9.13) On the book website, www.statlearning.com, there is a gene
expression data set (Ch12Ex13.csv) that consists of 40 tissue samples with measurements
on 1,000 genes. The first 20 samples are from healthy patients, while the second 20 are
from a diseased group.

a. Load in the data using read.csv(). You will need to select header = F.

b. Apply hierarchical clustering to the samples using correlationbased distance, and
plot the dendrogram. Do the genes separate the samples into the two groups? Do
your results depend on the type of linkage used?

3. Solution Load the MNIST data sets (uploaded as two CSV files) from the course website.
Note we use a training set that is smaller than the entire data (only 10,000 of the 60,000
training instances). The test set is another 10,000 observations. Train a random forest
classifier on the dataset and time how long it takes, then evaluate the resulting model on
the test set. Next, use PCA to reduce the dataset’s dimensionality, with an explained
variance ratio of 95%. Train a new random forest classifier on the reduced dataset and
see how long it takes. Was training much faster? Next, evaluate the classifier on the test
set. How does it compare to the previous classifier? Try again with a SGDClassifier (if
using Python) or a kNN (if using R). How much does PCA help now?

Solutions

Conceptual Questions

1. Question
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a. See Figure 1
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Figure 1: The dendrogram from hierarchically clustering the four observations using complete
linkage.

b. See Figure 2

c. (1,2), (3,4)

d. (1, 2, 3), (4)

e. See Figure 3

2. Question

a. See Figure 4

b. See Table 2.

Table 2: Randomly assigned cluster labels to each observation.

Obs. X1 X2 Label
1 1 4 1
2 1 3 1
3 0 4 2
4 5 1 2
5 6 2 1
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Obs. X1 X2 Label
6 4 0 2

c. Label 1 X1 = 2.67, X2 = 3.00

Label 2 X1 = 3.00, X2 = 1.67

d. See Table 3.

Table 3: Cluster labels to each observation after one iteration.

Obs. X1 X2 Label
1 1 4 1
2 1 3 1
3 0 4 1
4 5 1 2
5 6 2 2
6 4 0 2

e. See Figure 5

3. Question The main motivations for dimensionality reduction are:

• To speed up a subsequent training algorithm (in some cases it may even remove
noise and redundant features, making the training algorithm perform better)

• To visualize the data and gain insights on the most important features
• To save space (compression)

The main drawbacks are:

• Some information is lost, possibly degrading the performance of subsequent training
algorithms.

• It can be computationally intensive.
• It adds some complexity to your Machine Learning pipelines.
• Transformed features are often hard to interpret.

4. Question Once a dataset’s dimensionality has been reduced using one of the algorithms we
discussed, it is almost always impossible to perfectly reverse the operation, because some
information gets lost during dimensionality reduction. Moreover, while some algorithms
(such as PCA) have a simple reverse transformation procedure that can reconstruct a
dataset relatively similar to the original, other algorithms (such as t-SNE) do not.
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Figure 2: The dendrogram from hierarchically clustering the four observations using single
linkage.
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Figure 3: The dendrogram equivalent to Figure 1, for which two or more of the leaves are
repositioned, but for which the meaning of the dendrogram is the same.
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Figure 4: The sample with n = 6 observations and p = 2 features.
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Figure 5: The final result of the K-means clustering.
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5. Question PCA can be used to significantly reduce the dimensionality of most datasets,
even if they are highly nonlinear, because it can at least get rid of useless dimensions.
However, if there are no useless dimensions—as in the Swiss roll dataset—then reducing
dimensionality with PCA will lose too much information. You want to unroll the Swiss
roll, not squash it.

6. Question That’s a trick question: it depends on the dataset. Let’s look at two extreme
examples. First, suppose the dataset is composed of points that are almost perfectly
aligned. In this case, PCA can reduce the dataset down to just one dimension while still
preserving 95% of the variance. Now imagine that the dataset is composed of perfectly
random points, scattered all around the 1,000 dimensions. In this case roughly 950
dimensions are required to preserve 95% of the variance. So the answer is, it depends
on the dataset, and it could be any number between 1 and 950. Plotting the explained
variance as a function of the number of dimensions is one way to get a rough idea of the
dataset’s intrinsic dimensionality.

7. Question Intuitively, a dimensionality reduction algorithm performs well if it eliminates
a lot of dimensions from the dataset without losing too much information. One way to
measure this is to apply the reverse transformation and measure the reconstruction error.
However, not all dimensionality reduction algorithms provide a reverse transformation.
Alternatively, if you are using dimensionality reduction as a preprocessing step before
another Machine Learning algorithm (e.g., a Random Forest classifier), then you can
simply measure the performance of that second algorithm; if dimensionality reduction
did not lose too much information, then the algorithm should perform just as well as
when using the original dataset.

Applied Questions

1. Question

a. USArrests.hist <- hclust(dist(USArrests), method = "complete")
plot(USArrests.hist)
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b. cutree(USArrests.hist, 3)

Alabama Alaska Arizona Arkansas California
1 1 1 2 1

Colorado Connecticut Delaware Florida Georgia
2 3 1 1 2

Hawaii Idaho Illinois Indiana Iowa
3 3 1 3 3

Kansas Kentucky Louisiana Maine Maryland
3 3 1 3 1

Massachusetts Michigan Minnesota Mississippi Missouri
2 1 3 1 2

Montana Nebraska Nevada New Hampshire New Jersey
3 3 1 3 2

New Mexico New York North Carolina North Dakota Ohio
1 1 1 3 3

Oklahoma Oregon Pennsylvania Rhode Island South Carolina
2 2 3 2 1

South Dakota Tennessee Texas Utah Vermont
3 2 2 3 3

Virginia Washington West Virginia Wisconsin Wyoming
2 2 3 3 2

c. USArrests.scale <- scale(USArrests, center = FALSE, scale = TRUE)
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USArrests.scale.hist <- hclust(dist(USArrests.scale))
plot(USArrests.scale.hist)
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d. Scaling makes it such that every variable has the same “weight” when computing
distances. Said otherwise, it will prevent variables to have an outsized impact
on the clustering “just because” they are measured in units that make them take
large values (e.g., something measured in dollars would totally dominate something
measured in thousands of dollars, which makes little sense). In the present case, it
seems that scaling had some effect on the clusters at the “lower levels”, though the
larger clusters (e.g., 3 clusters) seem quite similar under both methods. We also
note that here, because certain crimes are much rarer than others (murder much
rarer than assault), it seems especially relevant to scale.

2. Question

a. # Note that you will have to download the csv file into your working
# directory
myData <- read.csv("Ch12Ex13.csv", header = FALSE)

b. gene.cluster <- hclust(as.dist(1 - cor(myData)), method = "complete")
plot(gene.cluster)
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We note that the splits are very clear for complete linkage. Try some of the other
methods to see what they produce.

3. ⋆ Question The solutions for R & Python are below. Note the Python solution (shown
second) was taken from the textbook, and it was converted/adapted to the R solution
(shown first).

R

library(randomForest)
library(rbenchmark)
library(caret)
library(kknn)

Exercise: Load the MNIST dataset

mnist_train <- read.csv("mnist_small_train.csv")
X_train <- mnist_train[, -1]
y_train <- as.factor(mnist_train[, "label"])

mnist_test <- read.csv("mnist_test.csv")
X_test <- mnist_test[, -1]
y_test <- as.factor(mnist_test[, "label"])

11



# Some of the columns have zero variance, so we remove them
nonzero_var_cols <- which(apply(X_train, 2, var) != 0)
X_train <- X_train[, nonzero_var_cols]
X_test <- X_test[, nonzero_var_cols]

Exercise: Train a Random Forest classifier on the dataset and time how long it takes, then
evaluate the resulting model on the test set.

benchmark(
rnd_clf <- randomForest(X_train, y_train,

ntree=20, seed=42, maxnodes=100),
replications=1)

test replicationselapsedrelativeuser.selfsys.selfuser.childsys.child
rnd_clf <- randomForest(X_train,
y_train, ntree = 20, seed = 42,
maxnodes = 100)

1 6.81 1 6.61 0.14 NA NA

y_pred <- predict(rnd_clf, X_test)
accuracy_score <- sum(y_pred == y_test) / length(y_test)
accuracy_score

[1] 0.9004

Exercise: Next, use PCA to reduce the dataset’s dimensionality, with an explained variance
ratio of 95%.

pca <- preProcess(X_train, method=c("pca"), thresh=0.95)
X_train_reduced <- predict(pca, X_train)
X_test_reduced <- predict(pca, X_test)
ncol(X_train_reduced)

[1] 284

Exercise: Train a new Random Forest classifier on the reduced dataset and see how long it
takes. Was training much faster?

benchmark(
rnd_clf_with_pca <- randomForest(X_train_reduced, y_train,

ntree=20, seed=42, maxnodes=100),
replications=1

)
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test replicationselapsedrelativeuser.selfsys.selfuser.childsys.child
rnd_clf_with_pca <-
randomForest(X_train_reduced, y_train,
ntree = 20, seed = 42, maxnodes = 100)

1 2.67 1 2.63 0.02 NA NA

Training time is better: “elapsed” time reduced by a factor of more than 2, which is a notable
improvement. That said, please note that dimensionality reduction does not always lead to
faster training time: it depends on the dataset, the model and the training algorithm. See
Figure 8-6 in Géron (2022). We next check the precision of the new random forest classifier.

Exercise: Next evaluate the classifier on the test set: how does it compare to the previous
classifier (that uses the “original” data)?

y_pred <- predict(rnd_clf_with_pca, X_test_reduced)
accuracy_score <- sum(y_pred == y_test) / length(y_test)
accuracy_score

[1] 0.7866

It is common for performance to drop slightly when reducing dimensionality, because we do
lose some potentially useful signal in the process. However, the performance drop is rather
severe in this case. So PCA results are mixed: while the fitting was faster, it yielded reduced
performance.

Exercise: Try again with an KNNClassifier. How much does PCA help now?

# The train.kknn function takes a formula as input
df_train <- data.frame(y = y_train, X_train)[1:5000,]

# Fit the model
benchmark(

knn_model <- train.kknn(y ~ ., data = df_train, ks=1:4),
replications=1

)

test replicationselapsedrelative user.self sys.self user.childsys.child
knn_model <- train.kknn(y ~ .,
data = df_train, ks = 1:4)

1 19.28 1 18.61 0.31 NA NA

13



# You can then predict with this model using the test data like so:
df_test <- data.frame(X_test)
predictions <- predict(knn_model, newdata = df_test)
accuracy_score <- sum(predictions == y_test) / length(y_test)
accuracy_score

[1] 0.8952

Okay, so the KNNClassifier takes much longer to train on this dataset than the Random-
ForestClassifier (and its predictive performance on the test set is similar to the Random Forest
model). But that’s not what we are interested in right now, we want to see how much PCA
can help KNNClassifier.

Exercise: Let’s train it using the reduced dataset:

df_train <- data.frame(y = y_train, X_train_reduced)[1:5000,]

benchmark(
knn_model <- train.kknn(y ~ ., data = df_train, ks=1:4),
replications=1

)

test replicationselapsedrelative user.self sys.self user.childsys.child
knn_model <- train.kknn(y ~ .,
data = df_train, ks = 1:4)

1 6.99 1 6.73 0.07 NA NA

df_test <- data.frame(X_test_reduced)
predictions <- predict(knn_model, newdata = df_test)
accuracy_score <- sum(predictions == y_test) / length(y_test)
accuracy_score

[1] 0.7935

Again, we have a speed boost (elapsed time reduced), at the cost of a substantial reduction in
performance.
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Python

Exercise: Load the MNIST dataset

import pandas as pd

mnist_train = pd.read_csv("mnist_small_train.csv")
X_train = mnist_train.drop("label", axis=1)
y_train = mnist_train["label"]

mnist_test = pd.read_csv("mnist_test.csv")
X_test = mnist_test.drop("label", axis=1)
y_test = mnist_test["label"]

Exercise: Train a Random Forest classifier on the dataset and time how long it takes, then
evaluate the resulting model on the test set.

from sklearn.ensemble import RandomForestClassifier
from timeit import default_timer as timer

rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)

start = timer()
rnd_clf.fit(X_train, y_train);
print(timer() - start)

3.9397651999997834

from sklearn.metrics import accuracy_score

y_pred = rnd_clf.predict(X_test)
accuracy_score(y_test, y_pred)

0.9514

Exercise: Next, use PCA to reduce the dataset’s dimensionality, with an explained variance
ratio of 95%.

from sklearn.decomposition import PCA

pca = PCA(n_components=0.95)
X_train_reduced = pca.fit_transform(X_train)
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Exercise: Train a new Random Forest classifier on the reduced dataset and see how long it
takes. Was training much faster?

rnd_clf_with_pca = RandomForestClassifier(n_estimators=100, random_state=42)

start = timer()
rnd_clf_with_pca.fit(X_train_reduced, y_train);
print(timer() - start)

9.244950499999959

Oh no! Training is actually about twice slower now! How can that be? Well, as we saw in this
chapter, dimensionality reduction does not always lead to faster training time: it depends on
the dataset, the model and the training algorithm. See Figure 8-6. If you try SGDClassifier
instead of RandomForestClassifier, you will find that training time is reduced by a factor of 5
when using PCA. Actually, we will do this in a second, but first let’s check the precision of the
new random forest classifier.

Exercise: Next evaluate the classifier on the test set: how does it compare to the previous
classifier?

X_test_reduced = pca.transform(X_test)

y_pred = rnd_clf_with_pca.predict(X_test_reduced)
accuracy_score(y_test, y_pred)

0.9131

Exercise: Try again with an SGDClassifier. How much does PCA help now?

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)

start = timer()
sgd_clf.fit(X_train, y_train);
print(timer() - start)

3.52241819999972

y_pred = sgd_clf.predict(X_test)
accuracy_score(y_test, y_pred)
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0.8919

Okay, so the SGDClassifier takes much longer to train on this dataset than the RandomForest-
Classifier, plus it performs worse on the test set. But that’s not what we are interested in right
now, we want to see how much PCA can help SGDClassifier. Let’s train it using the reduced
dataset:

sgd_clf_with_pca = SGDClassifier(random_state=42)
start = timer()
sgd_clf_with_pca.fit(X_train_reduced, y_train);
print(timer() - start)

0.976073599999836

Nice! Reducing dimensionality led to roughly 5× speedup. :) Let’s check the model’s
accuracy:

y_pred = sgd_clf_with_pca.predict(X_test_reduced)
accuracy_score(y_test, y_pred)

0.8965

Great! PCA not only gave us a roughly 5x speed boost, it also improved performance slightly.

So there you have it: PCA can give you a formidable speedup, and if you’re lucky a performance
boost. . . but it’s really not guaranteed: it depends on the model and the dataset!
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