
Unsupervised Learning
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk and Actuarial
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Overview
Challenge of Unsupervised Learning
K-means clustering
Hierarchical clustering
Dimension Reduction (PCA)
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Supervised vs Unsupervised Learning
Supervised

Data: 
Goal: Predict  using 

Unsupervised

Data: 
Goal: Discover interesting things
using 
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Challenge of Unsupervised Learning
Typical questions

Is there an informative way to visualize the data?
Can we discover subgroups among the variables?

More subjective than supervised learning
no simple goal for the analysis

Hard to assess the results obtained from unsupervised learning methods
no universally accepted mechanism for performing cross-validation or
validating results on an independent data set
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Clustering vs. PCA
Both seek to simplify the data via a small number of summaries
Different mechanisms

Clustering: find homogeneous subgroups among the observations
PCA: find a low-dimensional representation of the observations that
explain a good fraction of the variance

Both useful for visualisation
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Clustering Methods
A very broad set of techniques for finding subgroups, or clusters, in a data set
The observations within each group are quite similar to each other
Need to specify what it means for two or more observations to be similar or
different

often a domain-specific consideration
Two Clustering Methods

-means clustering
partition the observations into a pre-specified number of clusters

Hierarchical clustering
do not know in advance how many clusters we want
dendrogram, a tree-like visual representation of the observations

K
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Applications of Clustering
Market segmentation
Fraud detection
Group patients by medical condition (e.g Types of Diabetes)
Clustering of documents by type
Compression of information – representative policies
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-Means ClusteringK
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K-means clustering: Demonstration I
8 / 40

iPad

iPad

iPad

iPad



K-means clustering: Demonstration II
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K-means clustering: Demonstration III
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-Means Clustering
 denote sets containing the indices of the observations in each cluster

Each observation belongs to at least one of the  clusters

The clusters are non-overlapping, or no observation belongs to more than one
cluster

K

C  , … ,C  1 K

K

C  ∪1 C  ∪2 ⋯ ∪ C  =K {1, … ,n}

C  ∩k C  =k′ ∅  for all  k = k′
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Mathematical formulation: Clustering
A good clustering is one for which the within-cluster variation is as small as
possible

Mathematically:

The most common choice of 

where  is the number of observations in the th cluster
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-Means Clustering
The optimisation problem that defines -means clustering

A difficult problem to solve precisely
Exist a very simple algorithm that provides a local optimum

K
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K-means clustering Algorithm
1. Randomly initialise  cluster centres/centroids
2. Assign each observation to the cluster whose centroid is closest

closest defined using Euclidean distance
3. For each of the  clusters, compute the cluster centroid

centroid is the vector of the means for the observations in the th cluster
4. Repeat 2 & 3 until convergence

K

K

k
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K-means clustering: Local Optima

The algorithm finds a local rather than a global optimum
Results depend on initial centroids used
Important to run the algorithm multiple times and select the best solution
(minimum within-cluster variation)

Clusters after a seed of 1 Clusters after a seed of 2 Clusters after a seed of 9
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What is the right value of ?K
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Hierarchical Clustering
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Hierarchical Clustering
No need to specify the number of clusters 
Result is a tree-based representation, called a dendrogram
Allows user to choose any distance metric

-means restricted us to Euclidean distance
Focus on bottom-up or agglomerative clustering

start from the leaves
combine the clusters up to the trunk

Algorithm:

1. Treat each of the  observations as its own cluster
2. For :

1. Compute the pairwise inter-cluster dissimilarities among the  clusters
2. Identify the pair of clusters that are least dissimilar and merge them

K

K

n

i = n,n− 1,… , 2

i
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Hierarchical Agglomerative Clustering
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Hierarchical Clustering: The dendogram

Dendogram Clusters
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Choose a max distance I

Cut at K = 2 K = 2 clusters
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Choose a max distance II

Cut at K = 3 K = 3 clusters
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Choose a max distance III

Cut at K = 4 K = 4 clusters
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Choice of Dissimilarity Measure
Euclidean distance

Simple matching

Manhattan distance

Combination of numerical and
categorical?

Note that we need to consider how to compare groups as well.
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Distance between time series

Observations 1 and 3 have a small Euclidean distance between them, but are very weakly correlated. Observations
1 and 2 have a large Euclidean distance between them, but a small correlation-based distance between them.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.15.
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Distance between clusters (linkage)
Complete

maximal inter-cluster dissimilarity
compute all pairwise
dissimilarities between clusters A
and B and take largest.

Single
minimal inter-cluster dissimilarity
compute all pairwise
dissimilarities between clusters A
and B and take smallest.

Average
mean inter-cluster dissimilarity
compute all pairwise
dissimilarities between clusters A
and B and take average.

Centroid
dissimilarity between the centroid
for cluster A (a mean vector of
length ) and the centroid for
cluster B
an inversion can occur

p
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Same Data, Different Linkage

Average, complete, and single linkage applied to an example data set. Average and complete linkage tend to yield
more balanced clusters.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.14.
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Practical Issues
Should the observations / features be standardised in some way?
Hierarchical clustering

dissimilarity measure?
type of linkage?
where to cut the dendrogram?

-means clustering
how many clusters?

Validate the clusters obtained
does the clusters represent true subgroups in the data?

Robustness
Don’t rely on one single answer
Try different assumptions/data and check consistency of message

K
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Dimension Reduction
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Can you memorise these in 30 secs?

112358132134

248163264128

203048154248
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Principal Components Analysis
Produce derived variables for supervised learning

of smaller size than the original data set (i.e. dimension reduction)
explain most of the variability in the original set
mutually uncorrelated

A tool for data visualisation

“… our brains are sort of bad at looking at columns of numbers, but
absolutely ace at locating patterns and information in a two-dimensional
field of vision” Jordan Ellenberg

Source: Jordan Ellenberg (2014), How Not to Be Wrong: The Power of Mathematical Thinking
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PCA Motivation: Data compression I
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PCA Motivation: Data compression II
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PCA Motivation: Data compression III
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PCA Motivation: Data compression IV
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PCA Motivation: Data compression V
Reduce data from 2D to 1D

x ∈(1) R →2 z ∈(1) R

x ∈(2) R →2 z ∈(2) R

⋮

x ∈(n) R →2 z ∈(n) R
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Principal Components
The first principal component of a set of features  is the
normalised linear combination of the features

that has the largest variance

loadings of the first principal component
principal component loading vector

constraint to prevent an arbitrarily large variance

X  ,X  , … ,X  1 2 p

Z  =1 ϕ  X  +11 1 ϕ  X  +21 2 ⋯ + ϕ  X  ,  ϕ  =p1 p
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∑
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2 1
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T

 ϕ  =∑j=1
p

j1
2 1

Try out this  or .interactive demo this demo
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Further Principal Components
The second principal component is the linear combination of  that has
maximal variance and are uncorrelated with 

 is the second principal component loading vector

Geometry of PCA

The loading vector  defines a direction in feature space along which the data
vary the most
The projection of the  data points  onto this direction are the
principal component scores 

Is PCA the same as linear regression? Why or why not?

X , … ,X  1 p

Z  1

z  =i2 ϕ  x  +12 i1 ϕ  x  +22 i2 ⋯ + ϕ  x  , i =p2 ip 1, 2, … ,n

ϕ  =2 (ϕ  , … ,ϕ )12 p2
T

ϕ  1

n x  , … ,x  1 n

z  , … , z  11 n1
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Another Interpretation of PC
The first principal component loading vector

the line in -dimensional space that is closest to the  observations
Extends beyond the first principal component

the first two principal components of a data set span the plane that is
closest to the  observations
the first three principal components of a data set span the hyperplane that
is closest to the  observations
and so forth

In 3 dimensions, first two PCs:

Plane spans the first two principal component directions.
Minimises the sum of square distances from each point to the plane.

p n

n

n
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2 principal component directions I

Ninety observations simulated in three dimensions. The observations are displayed in color for ease of
visualization. The first two principal component directions span the plane that best fits the data. The plane is
positioned to minimize the sum of squared distances to each point.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.2a.
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2 principal component directions II

The first two principal component score vectors give the coordinates of the projection of the 90 observations onto
the plane.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.2b.
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More on PCA
Scaling the variables

typically scale each variable to have standard deviation one before
performing PCA
may not be necessary if variables are measured in the same units

Uniqueness of the principal components
each principal component loading vector is unique up to a sign flip

The proportion of variance explained (PVE)
the PVE of the th principal component is given bym
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How many principal components to use?

Left: a scree plot depicting the proportion of variance explained by each of the four principal components in the
USArrests data. Right: the cumulative proportion of variance explained by the four principal components in the
USArrests data.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.3.
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