
Unsupervised Learning
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani
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Supervised vs Unsupervised Learning
Supervised

Data: 

Goal: Predict  using 

Unsupervised

Data: 

Goal: Discover interesting things using

X  ,X  , … ,X  ,Y1 2 p

Y X  ,X  , … ,X  1 2 p

X  ,X  , … ,X  1 2 p

X  ,X  , … ,X  1 2 p
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Challenge of Unsupervised Learning
Typical questions

Is there an informative way to visualize the data?

Can we discover subgroups among the variables?

More subjective than supervised learning

There’s no simple goal for the analysis

Hard to assess the results obtained from unsupervised learning methods

There’s no way to validate your results on an independent data set
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Clustering vs. PCA
Both seek to simplify the data via a small number of summaries

Different mechanisms

Clustering: find homogeneous subgroups among the observations

PCA: find a low-dimensional representation of the observations that explain a good
fraction of the variance

Both useful for visualisation
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Clustering Methods
A very broad set of techniques for finding subgroups, or clusters, in a data set

The observations within each group are quite similar to each other

Need to specify what it means for two or more observations to be similar or different
(often domain-specific)

Two clustering methods

-means clustering

partition the observations into a pre-specified number of clusters

Hierarchical clustering

do not know in advance how many clusters we want

creates a dendrogram, a tree representation of clusters (for )

K

K = 1, 2, 3,… ,n
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Applications of Clustering
Market segmentation

Fraud detection

Group patients by medical condition (e.g types of diabetes)

Clustering of documents by type

Compression of information (e.g. representative policies in a portfolio)
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K-means clustering: Demonstration I
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K-means clustering: Demonstration II
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K-means clustering: Demonstration III
7 / 56



-Means Clustering
Denote  as the sets containing the indices of the observations in each cluster.

Each observation belongs to at least one of the  clusters

The clusters are non-overlapping; no observation belongs to more than one cluster

K

C  , … ,C  1 K

K

C  ∪1 C  ∪2 ⋯ ∪ C  =K {1, … ,n}.

C  ∩k C  =k′ ∅  for all  k = k .′
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Mathematical formulation: Clustering
A good clustering is one for which the within-cluster variation is as small as possible

The most common choice of 

where  is the number of observations in the th cluster.

It turns out that

where  is the mean of the observations in the th cluster, a.k.a. the centroid.
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-Means algorithm
The optimisation problem that defines -means clustering is

It’s a difficult problem to solve precisely, but we have a very simple algorithm that provides
a local optimum:

1. Randomly initialise  cluster centres/centroids

2. Assign each observation to the cluster whose centroid is closest

“Closest” is defined using Euclidean distance

3. For each of the  clusters, compute the cluster centroid

The “centroid” is the vector of the means for the observations in the th cluster

4. Repeat 2 & 3 until convergence

K
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K-means clustering: Local Optima

The algorithm finds a local rather than a global optimum

Results depend on initial centroids used

Important to run the algorithm multiple times and select the best solution (minimum
within-cluster variation)

Clusters after a seed of 1 Clusters after a seed of 2 Clusters after a seed of 9
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What is the right value of ?K
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The data

Only 19% of the data is non-zero.

R Python

train_df <- read.csv("mnist_train.csv")1
train_df2

# A tibble: 60,000 × 785
      X0    X1    X2    X3    X4    X5    X6    X7    X8    X9   X10   X11   X12
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1     0     0     0     0     0     0     0     0     0     0     0     0     0
 2     0     0     0     0     0     0     0     0     0     0     0     0     0
 3     0     0     0     0     0     0     0     0     0     0     0     0     0
 4     0     0     0     0     0     0     0     0     0     0     0     0     0
 5     0     0     0     0     0     0     0     0     0     0     0     0     0
 6     0     0     0     0     0     0     0     0     0     0     0     0     0
 7     0     0     0     0     0     0     0     0     0     0     0     0     0
 8     0     0     0     0     0     0     0     0     0     0     0     0     0
 9     0     0     0     0     0     0     0     0     0     0     0     0     0
10     0     0     0     0     0     0     0     0     0     0     0     0     0
# ℹ 59,990 more rows
# ℹ 772 more variables: X13 <dbl>, X14 <dbl>, X15 <dbl>, X16 <dbl>, X17 <dbl>,
#   X18 <dbl>, X19 <dbl>, X20 <dbl>, X21 <dbl>, X22 <dbl>, X23 <dbl>,
#   X24 <dbl>, X25 <dbl>, X26 <dbl>, X27 <dbl>, X28 <dbl>, X29 <dbl>,
#   X30 <dbl>, X31 <dbl>, X32 <dbl>, X33 <dbl>, X34 <dbl>, X35 <dbl>,
#   X36 <dbl>, X37 <dbl>, X38 <dbl>, X39 <dbl>, X40 <dbl>, X41 <dbl>,
#   X42 <dbl>, X43 <dbl>, X44 <dbl>, X45 <dbl>, X46 <dbl>, X47 <dbl>, …
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Which is the odd one out?
  X479 X480 X481       X482      X483      X484      X485      X486      X487
4    0    0    0 0.00000000 0.0000000 0.0000000 0.0000000 0.1882353 0.8666667
7    0    0    0 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
6    0    0    0 0.01960784 0.5294118 0.9882353 0.9882353 0.7058824 0.0627451
       X488       X489      X490      X491      X492      X493      X494
4 0.9843137 0.98431370 0.6745098 0.0000000 0.0000000 0.0000000 0.0000000
7 0.0000000 0.99215686 0.9882353 0.9882353 0.9882353 0.1647059 0.0000000
6 0.0000000 0.08235294 0.7960784 0.9921569 0.9686274 0.5058824 0.6784314
       X495      X496      X497      X498      X499
4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
7 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
6 0.9882353 0.9882353 0.7215686 0.2588235 0.1921569
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MNIST Dataset

The MNIST dataset.
Source: Wikipedia, .MNIST database
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The data is flattened

An image turned into a vector.
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Preparation
Take just a fraction of the data, and make a plotting function.

R Python

# Separate the features and the labels1
x <- as.matrix(train_df[, -785])2
y <- train_df$label3

4
# Split the data into train/validation and tes5
set.seed(88)6

7
test_indices <- sample(1:nrow(x),8
    size = 0.2*nrow(x))9
x_test <- x[test_indices,]10
y_test <- y[test_indices]11
x_train_val <- x[-test_indices,]12
y_train_val <- y[-test_indices]13

14
train_indices <- sample(1:nrow(x_train_val),15
    size = 0.75*nrow(x_train_val))16
x_train <- x_train_val[train_indices,]17
y_train <- y_train_val[train_indices]18
x_val <- x_train_val[-train_indices,]19
y_val <- y_train_val[-train_indices]20

R Python

plot_digit(x_train[1,])1
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Plotting the data
R Python
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There are 10 natural clusters
# Plot one of each digit1
par(mfrow = c(2,5))2
for (i in 0:9) {3
  plot_digit(x_train[y_train == i,][1,])4
  title(i)5
}6
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K-means Clustering on MNIST I

The within-cluster variation is

set.seed(1)1
kmeans_out <- kmeans(x_train, centers = 10)2

kmeans_out$tot.withinss1

[1] 1413762
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K-means Clustering on MNIST II

The within-cluster variation is

set.seed(2)1
kmeans_out <- kmeans(x_train, centers = 10)2

kmeans_out$tot.withinss1

[1] 1410923
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K-means Clustering on MNIST III

The within-cluster variation is

set.seed(3)1
kmeans_out <- kmeans(x_train, centers = 10)2

kmeans_out$tot.withinss1

[1] 1410441
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Elbow method MNIST I
R Python

wss <- rep(0, 20)1
for (k in 1:20) {2
  kmeans_out <- kmeans(x_train, centers = k)3
  wss[k] <- kmeans_out$tot.withinss4
}5
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Elbow method MNIST II
R Python

wss <- rep(0, 200)1
x_tiny_subset <- x_train[1:1000,]2
for (k in 1:200) {3
  kmeans_out <- kmeans(x_tiny_subset, centers = k)4
  wss[k] <- kmeans_out$tot.withinss5
}6
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Hierarchical Clustering
No need to specify the number of clusters 

Result is a tree-based representation, called a dendrogram

Allows user to choose any distance metric

-means restricted us to Euclidean distance

Focus on bottom-up or agglomerative clustering

start from the leaves

combine the clusters up to the trunk

Algorithm:

1. Treat each of the  observations as its own cluster

2. For :

1. Compute the pairwise inter-cluster dissimilarities among the  clusters

2. Identify the pair of clusters that are least dissimilar and merge them

K

K

n

i = n,n− 1,… , 2

i

23 / 56



Hierarchical Agglomerative Clustering

Example of agglomerative clustering (with single linkage).
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Hierarchical Clustering: The dendogram

Dendogram Clusters

25 / 56



Choose a max distance I

Cut at K = 2 K = 2 clusters
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Choose a max distance II

Cut at K = 3 K = 3 clusters
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Choose a max distance III

Cut at K = 4 K = 4 clusters
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Choice of Dissimilarity Measure
Euclidean distance

Simple matching

Manhattan distance

Combination of numerical and
categorical?

Note that we need to consider how to compare groups as well.

  (x  − x  )
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ij i j′
2

  I(x  =
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Distance between clusters (linkage)
Complete

maximal inter-cluster dissimilarity

compute all pairwise dissimilarities
between clusters A and B and take
largest.

Single

minimal inter-cluster dissimilarity

compute all pairwise dissimilarities
between clusters A and B and take
smallest.

Average

mean inter-cluster dissimilarity

compute all pairwise dissimilarities
between clusters A and B and take
average.

Centroid

dissimilarity between the centroid for
cluster A (a mean vector of length )
and the centroid for cluster B

an inversion can occur

p
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Same Data, Different Linkage

Average, complete, and single linkage applied to an example data set. Average and complete linkage tend to yield more balanced
clusters.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.14.
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Practical Issues
Should the observations / features be standardised in some way?

Hierarchical clustering

dissimilarity measure?

type of linkage?

where to cut the dendrogram?

-means clustering

how many clusters?

Validate the clusters obtained

does the clusters represent true subgroups in the data?

Robustness

Don’t rely on one single answer

Try different assumptions/data and check consistency of message

K
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Can you memorise these in 30 secs?

112358132134

248163264128

203048154248
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Principal Components Analysis
Produce derived variables for supervised learning

of smaller size than the original data set (i.e. dimension reduction)

explain most of the variability in the original set

mutually uncorrelated

A tool for data visualisation

“… our brains are sort of bad at looking at columns of numbers, but absolutely ace at
locating patterns and information in a two-dimensional field of vision” Jordan
Ellenberg

Source: Jordan Ellenberg (2014), How Not to Be Wrong: The Power of Mathematical Thinking
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PCA Motivation: Data compression I
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PCA Motivation: Data compression II
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PCA Motivation: Data compression III
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PCA Motivation: Data compression IV
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PCA Motivation: Data compression V
Reduce data from 2D to 1D

x ∈(1) R →2 z ∈(1) R

x ∈(2) R →2 z ∈(2) R

⋮

x ∈(n) R →2 z ∈(n) R
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Principal Components
The first principal component of a set of features  is the normalised linear
combination of the features

that has the largest variance

loadings of the first principal component

principal component loading vector

constraint to prevent an arbitrarily large variance

X  ,X  , … ,X  1 2 p

Z  =1 ϕ  X  +11 1 ϕ  X  +21 2 ⋯ + ϕ  X  ,  ϕ  =p1 p

j=1

∑
p

j1
2 1

ϕ  , … ,ϕ  11 p1

ϕ  =1 (ϕ  , … ,ϕ  )11 p1
T

 ϕ  =∑j=1
p

j1
2 1

Try out this  or .interactive demo this demo
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Further Principal Components
The second principal component is the linear combination of  that has
maximal variance and are uncorrelated with 

 is the second principal component loading vector

Geometry of PCA

The loading vector  defines a direction in feature space along which the data vary the
most

The projection of the  data points  onto this direction are the principal
component scores 

Is PCA the same as linear regression? Why or why not?

X  , … ,X  1 p

Z  1

z  =i2 ϕ  x  +12 i1 ϕ  x  +22 i2 ⋯ + ϕ  x  , i =p2 ip 1, 2, … ,n

ϕ  =2 (ϕ  , … ,ϕ  )12 p2
T

ϕ  1

n x  , … ,x  1 n

z  , … , z  11 n1
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Another Interpretation of PC
The first principal component loading vector

the line in -dimensional space that is closest to the  observations

Extends beyond the first principal component

the first two principal components of a data set span the plane that is closest to the 
observations

the first three principal components of a data set span the hyperplane that is closest
to the  observations

and so forth

In 3 dimensions, first two PCs:

Plane spans the first two principal component directions.

Minimises the sum of square distances from each point to the plane.

p n

n

n
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2 principal component directions I

Ninety observations simulated in three dimensions. The observations are displayed in color for ease of visualization. The first two
principal component directions span the plane that best fits the data. The plane is positioned to minimize the sum of squared
distances to each point.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.2a.
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2 principal component directions II

The first two principal component score vectors give the coordinates of the projection of the 90 observations onto the plane.
Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.2b.
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More on PCA
Scaling the variables

typically scale each variable to have standard deviation one before performing PCA

may not be necessary if variables are measured in the same units

Uniqueness of the principal components

each principal component loading vector is unique up to a sign flip

The proportion of variance explained (PVE)

the PVE of the th principal component is given bym

 

  x  ∑j=1
p ∑i=1

n
ij
2

  ϕ  x  ∑i=1
n (∑j=1

p
jm ij)

2
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How many principal components to use?

Left: a scree plot depicting the proportion of variance explained by each of the four principal components in the USArrests data.
Right: the cumulative proportion of variance explained by the four principal components in the USArrests data.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.3.
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PCA on MNIST (failed attempt)
pr_comp_train <- prcomp(x_train, scale = TRUE)1

Error in prcomp.default(x_train, scale = TRUE): cannot rescale a constant/zero column to unit variance

R Python

# Calculate the column std devs1
col_std_devs <- apply(x_train, 2, sd)2
col_std_devs3

          X0           X1           X2           X3           X4           X5 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
          X6           X7           X8           X9          X10          X11 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
         X12          X13          X14          X15          X16          X17 
0.0023975438 0.0052497943 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
         X18          X19          X20          X21          X22          X23 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
         X24          X25          X26          X27          X28          X29 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
         X30          X31          X32          X33          X34          X35 
0.0000000000 0.0000000000 0.0000000000 0.0001653479 0.0036899614 0.0073450035 
         X36          X37          X38          X39          X40          X41 
0.0145456588 0.0161569550 0.0211853119 0.0213073459 0.0208507875 0.0195538213 
         X42          X43          X44          X45          X46          X47 
0.0229472506 0.0243856500 0.0230354157 0.0211948495 0.0151041369 0.0109502265 
         X48          X49          X50          X51          X52          X53 
0.0111429515 0.0074043871 0.0041586589 0.0040716909 0.0000000000 0.0000000000 
         X54          X55          X56          X57          X58          X59 
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0013227829 0.0005993860 
         X60          X61          X62          X63          X64          X65 
0.0015278703 0.0021872664 0.0112660837 0.0184871514 0.0260346078 0.0377863192 
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PCA on MNIST
R Python

pr_comp_train <- prcomp(x_train)1
pve <- pr_comp_train$sdev^2 / sum(pr_comp_train$sdev^2)2
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Scree plot
A scree plot is a line plot of the eigenvalues of principal
components on the y-axis and the factors on the x-axis.

The scree plot is used to determine the number of factors to
retain in a principal components analysis.

The point at which the line starts to level off is the number of
factors to retain.

A scree

Source: .Wikimedia Commons
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PCA on MNIST: Cumulative
R Python

cve <- cumsum(pve)1
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Autoencoder
An autoencoder takes an observation, maps it to a latent space via an encoder module, then
decodes it back to an output with the same dimensions via a decoder module.

Schematic of an autoencoder.

Source: Marcus Lautier (2022).
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PCA on MNIST: Reconstructed with 400 PCs
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PCA on MNIST: Reconstructed with 100 PCs
51 / 56



PCA on MNIST: Reconstructed with 25 PCs
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PCA on MNIST: Reconstructed with 10 PCs
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PCA on MNIST: Reconstructed with 5 PCs
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PCA on MNIST: Reconstructed with 400 PCs II
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PCA on MNIST: Reconstructed with 100 PCs II
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PCA on MNIST: Reconstructed with 25 PCs II
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PCA on MNIST: Reconstructed with 10 PCs II
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PCA on MNIST: Reconstructed with 5 PCs II
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Just pull out the 4s and the 7s
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Logistic regression on 4 vs 7
R Python

x_train_filtered <- as.data.frame(x_train[, col_std_devs > 0])1
x_val_filtered <- as.data.frame(x_val[, col_std_devs > 0])2
x_test_filtered <- as.data.frame(x_test[, col_std_devs > 0])3

4
logistic_model_varying <- glm(y_train ~ ., data=x_train_filtered, family = binomial)5
nrow(summary(logistic_model_varying)$coefficients)6

[1] 629
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Logistic regression on first 50 PCs
R Python

pca_train <- as.data.frame(pr_comp_train$x[, 1:50])1
logistic_model_pca <- glm(y_train ~ ., data=pca_train, family = binomial)2
summary(logistic_model_pca)$coefficients3

                Estimate Std. Error      z value     Pr(>|z|)
(Intercept)  1.198515947 0.21135576   5.67060924 1.422906e-08
PC1          3.647866454 0.19481760  18.72452246 3.124608e-78
PC2          2.851327556 0.17512018  16.28211881 1.322109e-59
PC3          0.677184850 0.09516631   7.11580437 1.112620e-12
PC4         -1.637208408 0.12421894 -13.18002196 1.143575e-39
PC5         -0.077537401 0.12214106  -0.63481847 5.255468e-01
PC6          0.502354456 0.11548195   4.35006906 1.360947e-05
PC7         -0.792560391 0.11826262  -6.70169838 2.060109e-11
PC8         -0.351994691 0.11458539  -3.07189847 2.127021e-03
PC9          0.075791383 0.12492815   0.60667978 5.440634e-01
PC10         0.008328826 0.14043146   0.05930884 9.527061e-01
PC11         0.128684822 0.14642117   0.87886762 3.794731e-01
PC12        -0.717080199 0.15831254  -4.52952237 5.911718e-06
PC13         0.278289184 0.16411883   1.69565667 8.995092e-02
PC14        -0.326632889 0.13879100  -2.35341547 1.860184e-02
PC15         1.260314977 0.22677140   5.55764509 2.734387e-08
PC16         0.517611645 0.19579969   2.64357748 8.203499e-03
PC17         0.203745210 0.17867643   1.14030267 2.541602e-01
PC18        -0.462318412 0.19603068  -2.35839822 1.835399e-02
PC19         1.687111767 0.21417667   7.87719665 3.348078e-15
PC20         0.464271371 0.19228580   2.41448599 1.575743e-02
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Compare models on validation accuracy
R Python

# Perform PCA on the validation set using the same rotation from the training set1
pca_val <- as.data.frame(predict(pr_comp_train, newdata = x_val)[, 1:50])2

3
# Calculate accuracy on validation data4
y_pred <- predict(logistic_model_varying, x_val_filtered, type = "response") > 0.55
accuracy_varying <- mean(y_pred == y_val)6
y_pred <- predict(logistic_model_pca, pca_val, type = "response") > 0.57
accuracy_pca <- mean(y_pred == y_val)8

9
c(accuracy_varying, accuracy_pca)10

[1] 0.9641089 0.9847360
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Compression
“A photograph, which used to be a pattern of pigment on a sheet of chemically
coated paper, is now a string of numbers, each one representing the brightness and
color of a pixel. An image captured on a 4-megapixel camera is a list of 4 million
numbers-no small commitment of memory for the device shooting the picture. But
these numbers are highly correlated with each other. If one pixel is bright green, the
next one over is likely to be as well. The actual information contained in the image is
much less than 4 million numbers’ worth-and it’s precisely this fact that makes it
possible to have compression, the critical mathematical technology that allows
images, videos, music, and text to be stored in much smaller spaces than you’d
think.” Jordan Ellenberg

Source: Jordan Ellenberg, How Not to Be Wrong: The Power of Mathematical Thinking.
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