
Unsupervised Learning
ACTL3142 & ACTL5110 Statistical Machine Learning for Risk Applications

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani

1 / 56

Lecture Outline

Unsupervised Learning

-Means ClusteringK

Demo: MNIST

Hierarchical Clustering

Dimension Reduction

Demo: PCA on MNIST

1 / 56

Supervised vs Unsupervised Learning
Supervised

Data:

Goal: Predict using

Unsupervised

Data:

Goal: Discover interesting things using

X ,X , … ,X ,Y1 2 p

Y X ,X , … ,X 1 2 p

X ,X , … ,X 1 2 p

X ,X , … ,X 1 2 p

2 / 56

Challenge of Unsupervised Learning
Typical questions

Is there an informative way to visualize the data?

Can we discover subgroups among the variables?

More subjective than supervised learning

There’s no simple goal for the analysis

Hard to assess the results obtained from unsupervised learning methods

There’s no way to validate your results on an independent data set

3 / 56

Clustering vs. PCA
Both seek to simplify the data via a small number of summaries

Different mechanisms

Clustering: find homogeneous subgroups among the observations

PCA: find a low-dimensional representation of the observations that explain a good
fraction of the variance

Both useful for visualisation

4 / 56

Clustering Methods
A very broad set of techniques for finding subgroups, or clusters, in a data set

The observations within each group are quite similar to each other

Need to specify what it means for two or more observations to be similar or different
(often domain-specific)

Two clustering methods

-means clustering

partition the observations into a pre-specified number of clusters

Hierarchical clustering

do not know in advance how many clusters we want

creates a dendrogram, a tree representation of clusters (for)

K

K = 1, 2, 3,… ,n

5 / 56

Applications of Clustering
Market segmentation

Fraud detection

Group patients by medical condition (e.g types of diabetes)

Clustering of documents by type

Compression of information (e.g. representative policies in a portfolio)

6 / 56

Lecture Outline

-Means Clustering

Unsupervised Learning

K

Demo: MNIST

Hierarchical Clustering

Dimension Reduction

Demo: PCA on MNIST

6 / 56

K-means clustering: Demonstration I
7 / 56

K-means clustering: Demonstration II
7 / 56

K-means clustering: Demonstration III
7 / 56

-Means Clustering
Denote as the sets containing the indices of the observations in each cluster.

Each observation belongs to at least one of the clusters

The clusters are non-overlapping; no observation belongs to more than one cluster

K

C , … ,C 1 K

K

C ∪1 C ∪2 ⋯ ∪ C =K {1, … ,n}.

C ∩k C =k′ ∅ for all k = k .′

8 / 56

Mathematical formulation: Clustering
A good clustering is one for which the within-cluster variation is as small as possible

The most common choice of

where is the number of observations in the th cluster.

It turns out that

where is the mean of the observations in the th cluster, a.k.a. the centroid.

 W (C).
C ,…,C 1 K

min
k=1

∑
K

k

W (⋅)

W (C) =k (x −
∣C ∣k

1

i,i ∈C

′
k

∑
j=1

∑
p

ij x)i j′
2

∣C ∣k k

W (C) =k 2 (x −
i∈C k

∑
j=1

∑
p

ij)x̄kj
2

 x̄k k

9 / 56

-Means algorithm
The optimisation problem that defines -means clustering is

It’s a difficult problem to solve precisely, but we have a very simple algorithm that provides
a local optimum:

1. Randomly initialise cluster centres/centroids

2. Assign each observation to the cluster whose centroid is closest

“Closest” is defined using Euclidean distance

3. For each of the clusters, compute the cluster centroid

The “centroid” is the vector of the means for the observations in the th cluster

4. Repeat 2 & 3 until convergence

K

K

 (x −
C ,…,C 1 k

min
k=1

∑
K

∣C ∣k

1

i,i ∈C

′
k

∑
j=1

∑
p

ij x) .i j′
2

K

K

k

10 / 56

K-means clustering: Local Optima

The algorithm finds a local rather than a global optimum

Results depend on initial centroids used

Important to run the algorithm multiple times and select the best solution (minimum
within-cluster variation)

Clusters after a seed of 1 Clusters after a seed of 2 Clusters after a seed of 9

11 / 56

12 / 56

What is the right value of ?K
13 / 56

Lecture Outline

Unsupervised Learning

-Means ClusteringK

Demo: MNIST

Hierarchical Clustering

Dimension Reduction

Demo: PCA on MNIST

13 / 56

The data

Only 19% of the data is non-zero.

R Python

train_df <- read.csv("mnist_train.csv")1
train_df2

A tibble: 60,000 × 785
 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 0 0 0 0 0 0 0 0 0
 4 0 0 0 0 0 0 0 0 0 0 0 0 0
 5 0 0 0 0 0 0 0 0 0 0 0 0 0
 6 0 0 0 0 0 0 0 0 0 0 0 0 0
 7 0 0 0 0 0 0 0 0 0 0 0 0 0
 8 0 0 0 0 0 0 0 0 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0
ℹ 59,990 more rows
ℹ 772 more variables: X13 <dbl>, X14 <dbl>, X15 <dbl>, X16 <dbl>, X17 <dbl>,
X18 <dbl>, X19 <dbl>, X20 <dbl>, X21 <dbl>, X22 <dbl>, X23 <dbl>,
X24 <dbl>, X25 <dbl>, X26 <dbl>, X27 <dbl>, X28 <dbl>, X29 <dbl>,
X30 <dbl>, X31 <dbl>, X32 <dbl>, X33 <dbl>, X34 <dbl>, X35 <dbl>,
X36 <dbl>, X37 <dbl>, X38 <dbl>, X39 <dbl>, X40 <dbl>, X41 <dbl>,
X42 <dbl>, X43 <dbl>, X44 <dbl>, X45 <dbl>, X46 <dbl>, X47 <dbl>, …

14 / 56

Which is the odd one out?
 X479 X480 X481 X482 X483 X484 X485 X486 X487
4 0 0 0 0.00000000 0.0000000 0.0000000 0.0000000 0.1882353 0.8666667
7 0 0 0 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
6 0 0 0 0.01960784 0.5294118 0.9882353 0.9882353 0.7058824 0.0627451
 X488 X489 X490 X491 X492 X493 X494
4 0.9843137 0.98431370 0.6745098 0.0000000 0.0000000 0.0000000 0.0000000
7 0.0000000 0.99215686 0.9882353 0.9882353 0.9882353 0.1647059 0.0000000
6 0.0000000 0.08235294 0.7960784 0.9921569 0.9686274 0.5058824 0.6784314
 X495 X496 X497 X498 X499
4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
7 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
6 0.9882353 0.9882353 0.7215686 0.2588235 0.1921569

15 / 56

MNIST Dataset

The MNIST dataset.
Source: Wikipedia, .MNIST database

16 / 56

https://en.wikipedia.org/wiki/MNIST_database

The data is flattened

An image turned into a vector.

17 / 56

Preparation
Take just a fraction of the data, and make a plotting function.

R Python

Separate the features and the labels1
x <- as.matrix(train_df[, -785])2
y <- train_df$label3

4
Split the data into train/validation and tes5
set.seed(88)6

7
test_indices <- sample(1:nrow(x),8
 size = 0.2*nrow(x))9
x_test <- x[test_indices,]10
y_test <- y[test_indices]11
x_train_val <- x[-test_indices,]12
y_train_val <- y[-test_indices]13

14
train_indices <- sample(1:nrow(x_train_val),15
 size = 0.75*nrow(x_train_val))16
x_train <- x_train_val[train_indices,]17
y_train <- y_train_val[train_indices]18
x_val <- x_train_val[-train_indices,]19
y_val <- y_train_val[-train_indices]20

R Python

plot_digit(x_train[1,])1

18 / 56

Plotting the data
R Python

19 / 56

There are 10 natural clusters
Plot one of each digit1
par(mfrow = c(2,5))2
for (i in 0:9) {3
 plot_digit(x_train[y_train == i,][1,])4
 title(i)5
}6

20 / 56

K-means Clustering on MNIST I

The within-cluster variation is

set.seed(1)1
kmeans_out <- kmeans(x_train, centers = 10)2

kmeans_out$tot.withinss1

[1] 1413762

21 / 56

K-means Clustering on MNIST II

The within-cluster variation is

set.seed(2)1
kmeans_out <- kmeans(x_train, centers = 10)2

kmeans_out$tot.withinss1

[1] 1410923

21 / 56

K-means Clustering on MNIST III

The within-cluster variation is

set.seed(3)1
kmeans_out <- kmeans(x_train, centers = 10)2

kmeans_out$tot.withinss1

[1] 1410441

21 / 56

Elbow method MNIST I
R Python

wss <- rep(0, 20)1
for (k in 1:20) {2
 kmeans_out <- kmeans(x_train, centers = k)3
 wss[k] <- kmeans_out$tot.withinss4
}5

22 / 56

Elbow method MNIST II
R Python

wss <- rep(0, 200)1
x_tiny_subset <- x_train[1:1000,]2
for (k in 1:200) {3
 kmeans_out <- kmeans(x_tiny_subset, centers = k)4
 wss[k] <- kmeans_out$tot.withinss5
}6

22 / 56

Lecture Outline

Demo: MNIST

Unsupervised Learning

-Means ClusteringK

Hierarchical Clustering

Dimension Reduction

Demo: PCA on MNIST

22 / 56

Hierarchical Clustering
No need to specify the number of clusters

Result is a tree-based representation, called a dendrogram

Allows user to choose any distance metric

-means restricted us to Euclidean distance

Focus on bottom-up or agglomerative clustering

start from the leaves

combine the clusters up to the trunk

Algorithm:

1. Treat each of the observations as its own cluster

2. For :

1. Compute the pairwise inter-cluster dissimilarities among the clusters

2. Identify the pair of clusters that are least dissimilar and merge them

K

K

n

i = n,n− 1,… , 2

i

23 / 56

Hierarchical Agglomerative Clustering

Example of agglomerative clustering (with single linkage).

24 / 56

Hierarchical Clustering: The dendogram

Dendogram Clusters

25 / 56

Choose a max distance I

Cut at K = 2 K = 2 clusters

26 / 56

Choose a max distance II

Cut at K = 3 K = 3 clusters

27 / 56

Choose a max distance III

Cut at K = 4 K = 4 clusters

28 / 56

Choice of Dissimilarity Measure
Euclidean distance

Simple matching

Manhattan distance

Combination of numerical and
categorical?

Note that we need to consider how to compare groups as well.

 (x − x)
j=1

∑
p

ij i j′
2

 I(x =
p

1

j=1

∑
p

ij x)i j′

 ∣x −
j=1

∑
p

ij x ∣i j′

29 / 56

Distance between clusters (linkage)
Complete

maximal inter-cluster dissimilarity

compute all pairwise dissimilarities
between clusters A and B and take
largest.

Single

minimal inter-cluster dissimilarity

compute all pairwise dissimilarities
between clusters A and B and take
smallest.

Average

mean inter-cluster dissimilarity

compute all pairwise dissimilarities
between clusters A and B and take
average.

Centroid

dissimilarity between the centroid for
cluster A (a mean vector of length)
and the centroid for cluster B

an inversion can occur

p

30 / 56

Same Data, Different Linkage

Average, complete, and single linkage applied to an example data set. Average and complete linkage tend to yield more balanced
clusters.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.14.

31 / 56

Practical Issues
Should the observations / features be standardised in some way?

Hierarchical clustering

dissimilarity measure?

type of linkage?

where to cut the dendrogram?

-means clustering

how many clusters?

Validate the clusters obtained

does the clusters represent true subgroups in the data?

Robustness

Don’t rely on one single answer

Try different assumptions/data and check consistency of message

K

32 / 56

Lecture Outline

Hierarchical Clustering

Unsupervised Learning

-Means ClusteringK

Demo: MNIST

Dimension Reduction

Demo: PCA on MNIST

32 / 56

Can you memorise these in 30 secs?

112358132134

248163264128

203048154248

33 / 56

Principal Components Analysis
Produce derived variables for supervised learning

of smaller size than the original data set (i.e. dimension reduction)

explain most of the variability in the original set

mutually uncorrelated

A tool for data visualisation

“… our brains are sort of bad at looking at columns of numbers, but absolutely ace at
locating patterns and information in a two-dimensional field of vision” Jordan
Ellenberg

Source: Jordan Ellenberg (2014), How Not to Be Wrong: The Power of Mathematical Thinking

34 / 56

PCA Motivation: Data compression I
35 / 56

PCA Motivation: Data compression II
36 / 56

PCA Motivation: Data compression III
37 / 56

PCA Motivation: Data compression IV
38 / 56

PCA Motivation: Data compression V
Reduce data from 2D to 1D

x ∈(1) R →2 z ∈(1) R

x ∈(2) R →2 z ∈(2) R

⋮

x ∈(n) R →2 z ∈(n) R

39 / 56

Principal Components
The first principal component of a set of features is the normalised linear
combination of the features

that has the largest variance

loadings of the first principal component

principal component loading vector

constraint to prevent an arbitrarily large variance

X ,X , … ,X 1 2 p

Z =1 ϕ X +11 1 ϕ X +21 2 ⋯ + ϕ X , ϕ =p1 p

j=1

∑
p

j1
2 1

ϕ , … ,ϕ 11 p1

ϕ =1 (ϕ , … ,ϕ)11 p1
T

 ϕ =∑j=1
p

j1
2 1

Try out this or .interactive demo this demo

40 / 56

https://setosa.io/ev/principal-component-analysis/
https://computationalthinking.mit.edu/Fall23/data_science/pca/

Further Principal Components
The second principal component is the linear combination of that has
maximal variance and are uncorrelated with

 is the second principal component loading vector

Geometry of PCA

The loading vector defines a direction in feature space along which the data vary the
most

The projection of the data points onto this direction are the principal
component scores

Is PCA the same as linear regression? Why or why not?

X , … ,X 1 p

Z 1

z =i2 ϕ x +12 i1 ϕ x +22 i2 ⋯ + ϕ x , i =p2 ip 1, 2, … ,n

ϕ =2 (ϕ , … ,ϕ)12 p2
T

ϕ 1

n x , … ,x 1 n

z , … , z 11 n1

41 / 56

Another Interpretation of PC
The first principal component loading vector

the line in -dimensional space that is closest to the observations

Extends beyond the first principal component

the first two principal components of a data set span the plane that is closest to the
observations

the first three principal components of a data set span the hyperplane that is closest
to the observations

and so forth

In 3 dimensions, first two PCs:

Plane spans the first two principal component directions.

Minimises the sum of square distances from each point to the plane.

p n

n

n

42 / 56

2 principal component directions I

Ninety observations simulated in three dimensions. The observations are displayed in color for ease of visualization. The first two
principal component directions span the plane that best fits the data. The plane is positioned to minimize the sum of squared
distances to each point.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.2a.

43 / 56

2 principal component directions II

The first two principal component score vectors give the coordinates of the projection of the 90 observations onto the plane.
Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.2b.

44 / 56

More on PCA
Scaling the variables

typically scale each variable to have standard deviation one before performing PCA

may not be necessary if variables are measured in the same units

Uniqueness of the principal components

each principal component loading vector is unique up to a sign flip

The proportion of variance explained (PVE)

the PVE of the th principal component is given bym

 x ∑j=1
p ∑i=1

n
ij
2

 ϕ x ∑i=1
n (∑j=1

p
jm ij)

2

45 / 56

How many principal components to use?

Left: a scree plot depicting the proportion of variance explained by each of the four principal components in the USArrests data.
Right: the cumulative proportion of variance explained by the four principal components in the USArrests data.

Source: James et al. (2021), An Introduction to Statistical Learning, Figure 12.3.

46 / 56

Lecture Outline

Unsupervised Learning

-Means ClusteringK

Demo: MNIST

Hierarchical Clustering

Dimension Reduction

Demo: PCA on MNIST

46 / 56

PCA on MNIST (failed attempt)
pr_comp_train <- prcomp(x_train, scale = TRUE)1

Error in prcomp.default(x_train, scale = TRUE): cannot rescale a constant/zero column to unit variance

R Python

Calculate the column std devs1
col_std_devs <- apply(x_train, 2, sd)2
col_std_devs3

 X0 X1 X2 X3 X4 X5
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
 X6 X7 X8 X9 X10 X11
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
 X12 X13 X14 X15 X16 X17
0.0023975438 0.0052497943 0.0000000000 0.0000000000 0.0000000000 0.0000000000
 X18 X19 X20 X21 X22 X23
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
 X24 X25 X26 X27 X28 X29
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
 X30 X31 X32 X33 X34 X35
0.0000000000 0.0000000000 0.0000000000 0.0001653479 0.0036899614 0.0073450035
 X36 X37 X38 X39 X40 X41
0.0145456588 0.0161569550 0.0211853119 0.0213073459 0.0208507875 0.0195538213
 X42 X43 X44 X45 X46 X47
0.0229472506 0.0243856500 0.0230354157 0.0211948495 0.0151041369 0.0109502265
 X48 X49 X50 X51 X52 X53
0.0111429515 0.0074043871 0.0041586589 0.0040716909 0.0000000000 0.0000000000
 X54 X55 X56 X57 X58 X59
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0013227829 0.0005993860
 X60 X61 X62 X63 X64 X65
0.0015278703 0.0021872664 0.0112660837 0.0184871514 0.0260346078 0.0377863192

47 / 56

PCA on MNIST
R Python

pr_comp_train <- prcomp(x_train)1
pve <- pr_comp_train$sdev^2 / sum(pr_comp_train$sdev^2)2

48 / 56

Scree plot
A scree plot is a line plot of the eigenvalues of principal
components on the y-axis and the factors on the x-axis.

The scree plot is used to determine the number of factors to
retain in a principal components analysis.

The point at which the line starts to level off is the number of
factors to retain.

A scree

Source: .Wikimedia Commons

49 / 56

https://commons.wikimedia.org/wiki/File:Yamnuska_bottom_cliff.jpg

PCA on MNIST: Cumulative
R Python

cve <- cumsum(pve)1

50 / 56

Autoencoder
An autoencoder takes an observation, maps it to a latent space via an encoder module, then
decodes it back to an output with the same dimensions via a decoder module.

Schematic of an autoencoder.

Source: Marcus Lautier (2022).

51 / 56

PCA on MNIST: Reconstructed with 400 PCs
51 / 56

PCA on MNIST: Reconstructed with 100 PCs
51 / 56

PCA on MNIST: Reconstructed with 25 PCs
51 / 56

PCA on MNIST: Reconstructed with 10 PCs
51 / 56

PCA on MNIST: Reconstructed with 5 PCs
51 / 56

PCA on MNIST: Reconstructed with 400 PCs II
51 / 56

PCA on MNIST: Reconstructed with 100 PCs II
51 / 56

PCA on MNIST: Reconstructed with 25 PCs II
51 / 56

PCA on MNIST: Reconstructed with 10 PCs II
51 / 56

PCA on MNIST: Reconstructed with 5 PCs II
51 / 56

Just pull out the 4s and the 7s
52 / 56

Logistic regression on 4 vs 7
R Python

x_train_filtered <- as.data.frame(x_train[, col_std_devs > 0])1
x_val_filtered <- as.data.frame(x_val[, col_std_devs > 0])2
x_test_filtered <- as.data.frame(x_test[, col_std_devs > 0])3

4
logistic_model_varying <- glm(y_train ~ ., data=x_train_filtered, family = binomial)5
nrow(summary(logistic_model_varying)$coefficients)6

[1] 629

53 / 56

Logistic regression on first 50 PCs
R Python

pca_train <- as.data.frame(pr_comp_train$x[, 1:50])1
logistic_model_pca <- glm(y_train ~ ., data=pca_train, family = binomial)2
summary(logistic_model_pca)$coefficients3

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.198515947 0.21135576 5.67060924 1.422906e-08
PC1 3.647866454 0.19481760 18.72452246 3.124608e-78
PC2 2.851327556 0.17512018 16.28211881 1.322109e-59
PC3 0.677184850 0.09516631 7.11580437 1.112620e-12
PC4 -1.637208408 0.12421894 -13.18002196 1.143575e-39
PC5 -0.077537401 0.12214106 -0.63481847 5.255468e-01
PC6 0.502354456 0.11548195 4.35006906 1.360947e-05
PC7 -0.792560391 0.11826262 -6.70169838 2.060109e-11
PC8 -0.351994691 0.11458539 -3.07189847 2.127021e-03
PC9 0.075791383 0.12492815 0.60667978 5.440634e-01
PC10 0.008328826 0.14043146 0.05930884 9.527061e-01
PC11 0.128684822 0.14642117 0.87886762 3.794731e-01
PC12 -0.717080199 0.15831254 -4.52952237 5.911718e-06
PC13 0.278289184 0.16411883 1.69565667 8.995092e-02
PC14 -0.326632889 0.13879100 -2.35341547 1.860184e-02
PC15 1.260314977 0.22677140 5.55764509 2.734387e-08
PC16 0.517611645 0.19579969 2.64357748 8.203499e-03
PC17 0.203745210 0.17867643 1.14030267 2.541602e-01
PC18 -0.462318412 0.19603068 -2.35839822 1.835399e-02
PC19 1.687111767 0.21417667 7.87719665 3.348078e-15
PC20 0.464271371 0.19228580 2.41448599 1.575743e-02

54 / 56

Compare models on validation accuracy
R Python

Perform PCA on the validation set using the same rotation from the training set1
pca_val <- as.data.frame(predict(pr_comp_train, newdata = x_val)[, 1:50])2

3
Calculate accuracy on validation data4
y_pred <- predict(logistic_model_varying, x_val_filtered, type = "response") > 0.55
accuracy_varying <- mean(y_pred == y_val)6
y_pred <- predict(logistic_model_pca, pca_val, type = "response") > 0.57
accuracy_pca <- mean(y_pred == y_val)8

9
c(accuracy_varying, accuracy_pca)10

[1] 0.9641089 0.9847360

55 / 56

Compression
“A photograph, which used to be a pattern of pigment on a sheet of chemically
coated paper, is now a string of numbers, each one representing the brightness and
color of a pixel. An image captured on a 4-megapixel camera is a list of 4 million
numbers-no small commitment of memory for the device shooting the picture. But
these numbers are highly correlated with each other. If one pixel is bright green, the
next one over is likely to be as well. The actual information contained in the image is
much less than 4 million numbers’ worth-and it’s precisely this fact that makes it
possible to have compression, the critical mathematical technology that allows
images, videos, music, and text to be stored in much smaller spaces than you’d
think.” Jordan Ellenberg

Source: Jordan Ellenberg, How Not to Be Wrong: The Power of Mathematical Thinking.

56 / 56

