Glossary of relevant R functions

Creating training/validation/test splits

o sample(vector/number, size) — Samples a certain amount of numbers from a
range/vector

— Base R
o sample_frac(proportion) — samples a certain amount of a dataset

— dplyr package
— Can combine with anti_join from dplyr package to create opposite of dataset

o sample.split(target_variable, split_ratio)

— caTools package
— Creates a list of row indexes, while preserving the ratio of labels for the target
variable

o createDataPartition(target_variable, number_of_partitions, training_proportion)

— caret package
— Creates training/test partitions with similar distributions of the target variable y.

EDA functions

e hist(data, breaks)

— Plots a histogram of a vector of data
— Breaks argument allows you to specify the number of breaks/bins to use

e par(mfrow = c(a,b))

— Specifies plotting display in R
— Will display a grid of plots a rows by b columns



o pairs(data)

— Plots a matrix of scatterplots
— Categorical and logical variables converted to numeric factors similar to
data.matrix()

See also: ggplot2 introduction and quick examples

o 3 Data visualisation | R for Data Science (had.co.nz)
o Histograms and frequency polygons — geom_ freqpoly e ggplot2 (tidyverse.org)
o Points — geom_ point e ggplot2 (tidyverse.org)

Linear models and generalised linear models

e Im(target_variable ~ predictors, data, subset, offset)

— Fits a simple linear regression using the specified predictors on the target variable

— Offset specifies if you would like to include any variables with known slope — such as
using population to scale the predicted value on a proportional basis to population

— Subset allows you to specify indexes to use to train the data — can use row indexes

rather than manually subset data

Can call plot (model_object) to plot diagnostic plots

Can call summary(model_object) to display summary table of coefficients and p-

values

e glm(target_variable ~ predictors, family, data, offset, subset)

Fits a glm model using a specified distributional family

Can specify custom link function to use instead of canonical link function — see
documentation

— Can call plot(glm_object) to plot diagnostic plots

— Can call summary(glm_object) to display summary table of coefficients and p-
values

Fitting a k-nearest neighbours model

Using class package: i.e. first run install.packages("class") and library(class).

e knn(train, test, cl, k, prob)

— train specifies training dataset to use for KNN
— test specifies test dataset to predict using KNN model
— cl is a vector of the true classification labels


https://r4ds.had.co.nz/data-visualisation.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_point.html

— K specifies the number of nearest neighbours

— Outputs a list of predicted labels using the KNN model

— Can use prob = TRUE argument to instead output probabilities calculated using
KNN

Subset selection: Best, forward and backward

Using leaps package: i.e. first run install.packages("leaps") and library(leaps).

e regsubsets(Y_var ~ predictors, Data, method)

— Can perform stepwise, forward and backward selection by setting method to “for-
ward”, “stepwise” or “backward”

— summary (regsubsets_object) returns a list of variables used for each model size

Summary object has sub-objects such as Mallow’s C),, BIC and Adjusted R?

— Can use coef (regsubsets_object, num_variables) to extract coeflicients for a
given model size

LOOCV and k-fold CV on GLM models

Using boot package: i.e. first run install.packages("boot") and library(boot).

e cv.glm(Data, glm_model_object, K) — performs cross-validation using the fitted glm
object and data

— By default, performs LOOCV CV but can use K argument to specify number of
folds, and then perform k-fold CV.

— Access cross-validation errors using $delta on cv.glm object. Returns two values
— one is the raw cross-validated error and the other is the bias corrected version for
not using LOOCV

— See documentation here: cv.glm function - RDocumentation

— This approach only works for GLM objects

Alternative approach: Manually creating folds using caret package

e createFolds(target_variable, k)

— Creates k number of folds, by default returned in a matrix, with roughly equal
distribution of the target distribution in each fold
— Could use these folds along with a loop to create cross-validated errors manually


https://www.rdocumentation.org/packages/boot/versions/1.3-28.1/topics/cv.glm

Fitting ridge regression and lasso regression models

Using glmnet package: i.e. first run install.packages("glmnet") and library(glmnet).
e model.matrix(target_variable ~ predictors, Data)[, -1]

— Creates a model matrix with the predictors and an intercept. Use [, -1] to drop
the created intercept column
— Required when using glmnet to fit lasso and ridge regression models

e glmnet(x_var, y_var, alpha, lambda)

— x_var is the matrix of predictors created using model.matrix
— alpha = 0 specifies a ridge regression, alpha = 1 specifies a lasso regression
— lambda allows you to specify a custom range of lambda values to look across

e predict(glmnet_model, s, type, newx)

— Using predict with a glmnet model object allows you to specify s, the value of
lambda

— type = coeflicients returns coefficients, otherwise returns predicted values by re-
placing type with newx argument.

e cv.glmnet(x_var, y_var, alpha, nfolds = 10)

— Fits either a ridge regression or lasso regression based on the value of alpha

— Allows you to extract the lambda that minimises the RSS using $lambda.min on
the cv.glmnet object.

— Also simultaneously performs either k-fold or LOOCYV using nfolds argument (the
number of folds)

— See documentation here: Cross-validation for glmnet — cv.glmnet o glmnet (stan-

ford.edu)

Fitting tree models

Using tree package: i.e. first run install.packages("tree") and library(tree).

e tree(target_variable ~ predictors, data, subset)

— Fits a simple decision tree model using specified predictors
— Can use subset argument, similar to a linear model
— Can plot a graph of the fitted tree using:

% plot(tree_model)
* text(tree_model, pretty = 0)


https://glmnet.stanford.edu/reference/cv.glmnet.html
https://glmnet.stanford.edu/reference/cv.glmnet.html

Using the rpart & rpart.plot packages: i.e. first run install.packages(c("rpart",
"rpart.plot")) then library(rpart) and library(rpart.plot).

e rpart(Sales ~., data, subset)
— Similar to tree but allows plotting using rpart.plot function
e rpart.plot(rpart_tree_model)

— Plots the rpart tree model in a nice plot

Cross validating optimal decision tree size and pruning tree

e cv.tree(tree_model, k)

— Input a fitted tree model into function to perform cross validation

— Can specify k, the number of folds to use for cross validation

— Can access cv_tree_object$size, cv_tree_object$dev and cv_tree_object$k,
for vectors of the size, corresponding deviance and value of alpha (the cost com-
plexity parameter for pruning), to find optimal cost complexity parameter based on
lowest deviance

e prune.tree(tree_model, best, k)

— Creates a new pruned tree based on an already fitted tree model, the specified
number of terminal nodes, or alternatively, the cost complexity parameter

best refers to the number of terminal nodes

— k refers to the cost complexity parameter

— Only one of best or k needs to be specified

Fitting bagging and random forest models

Using randomForest package: i.e. first run install.packages("randomForest") and
library(randomForest).

e randomForest(target_variable ~ predictors, data, importance, mtry,
subset)

— Fits either a random forest model or a bagged model based on what is specified for
the mtry argument

— mtry refers to the number of variables to randomly sample at each split. When
fitting a bagged model, mtry should equal the number of predictors in the data,
while in a random forest model, it can be any value (by default it is \ﬂp) for
classification and p/3 for regression, where p is the number of predictors)



e importance(rf_model)

— Outputs a list of variable importance for the fitted rf _model, based on an averaged
MSE across fitted trees and total decrease in node purity

e varImpPlot(rf_model, sort)

— Plots a variable importance plot based on the averaged MSE metric and decrease
in node purity metric

— sort specifies whether to sort variables by importance in descending order. By
default, is true.

Fitting a gradient boosted model

Using gbm package: i.e. first run install.packages("gbm") and library(gbm).

e gbm(target_variables ~ predictors, distribution, data, n.trees, interaction.depth,
shrinkage)

— Fits a generalised gradient boosted regression model

— distribution refers to the distribution used for the loss function when performing
splits using the GBM model

— n.trees refers to the total number of ensemble trees to fit

— interaction.depth specifies the number of splits in each tree — 1 refers to trees
with one split, depth is 2 is typically used to incorporate interaction effects

— shrinkage specifies the learning rate to be used in the gradient boosting algorithm

— cv.folds specifies how many folds to use when performing cross-validation — can
use to instruct ghm function to perform cross-validation

Fitting hierarchical clustering

e hclust(dist(data), method)

— Need to wrap data using dist () function to create a dissimilarity matrix based on
the data

— Method specifies the linkage method to be used. Can specify complete, average,
and single
— Can use plot(hclust_object) to plot dendrogram

e cutree(hclust_object, k, h)

— Cuts a hclust_object and returns cluster labels corresponding to each observation
— Can either specify k or h to cut the tree



x k refers to the desired number of clusters
* h refers to the height at which to cut the tree

Fitting a kmeans model

e kmeans(data, centers, nstart)

— Performs kmeans clustering on data, using specified number of clusters, specified
by centers

— nstart specifies the number of different initial conditions to use to compare. R
will run k-means on each of iterations and choose the best solution with the lowest
within-cluster variance.

— Can access within-cluster sum of squares using $tot.withinss object of the
kmeans_model

— Can access final cluster labels output by kmeans algorithm using $cluster object
of kmeans_model

Performing principal components analysis

e prcomp(data, scale, center)

— Performs prinicipal components analysis on the data

— scale specifies whether to scale variables to have standard deviation one

— center specifies whether to shift variables to have mean of 0

— $rotation object of pca_model contains the component loadings on each of the
principal components

— $x contains the principal component scores or the coordinates of the predictor
variable in each direction of the principal component

— $sdevcontains the standard deviation of each principal component — you can square
this variable to obtain the variance of each principal component, and hence calculate
the total variance explained by each principal component

e biplot(pr_object, scale = 0)

— Plots a biplot based on the pr_object fitted where it plots the datapoints on a
scatterplot of the first two principal components
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